首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18086篇
  免费   189篇
  国内免费   204篇
安全科学   585篇
废物处理   735篇
环保管理   2333篇
综合类   3683篇
基础理论   4279篇
环境理论   9篇
污染及防治   4453篇
评价与监测   1387篇
社会与环境   915篇
灾害及防治   100篇
  2022年   162篇
  2021年   148篇
  2020年   133篇
  2019年   164篇
  2018年   273篇
  2017年   316篇
  2016年   434篇
  2015年   330篇
  2014年   522篇
  2013年   1358篇
  2012年   613篇
  2011年   798篇
  2010年   641篇
  2009年   712篇
  2008年   754篇
  2007年   787篇
  2006年   716篇
  2005年   661篇
  2004年   593篇
  2003年   575篇
  2002年   561篇
  2001年   687篇
  2000年   439篇
  1999年   322篇
  1998年   190篇
  1997年   222篇
  1996年   214篇
  1995年   241篇
  1994年   232篇
  1993年   177篇
  1992年   201篇
  1991年   202篇
  1990年   195篇
  1989年   167篇
  1988年   175篇
  1987年   112篇
  1986年   145篇
  1985年   149篇
  1984年   138篇
  1983年   142篇
  1982年   141篇
  1981年   151篇
  1980年   105篇
  1979年   117篇
  1978年   114篇
  1976年   97篇
  1974年   107篇
  1972年   91篇
  1967年   100篇
  1964年   92篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
851.
Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria   总被引:1,自引:0,他引:1  
We present a travel-time based reactive transport model to simulate an in-situ bioremediation experiment for demonstrating enhanced bioreduction of uranium(VI). The model considers aquatic equilibrium chemistry of uranium and other groundwater constituents, uranium sorption and precipitation, and the microbial reduction of nitrate, sulfate and U(VI). Kinetic sorption/desorption of U(VI) is characterized by mass transfer between stagnant micro-pores and mobile flow zones. The model describes the succession of terminal electron accepting processes and the growth and decay of sulfate-reducing bacteria, concurrent with the enzymatic reduction of aqueous U(VI) species. The effective U(VI) reduction rate and sorption site distributions are determined by fitting the model simulation to an in-situ experiment at Oak Ridge, TN. Results show that (1) the presence of nitrate inhibits U(VI) reduction at the site; (2) the fitted effective rate of in-situ U(VI) reduction is much smaller than the values reported for laboratory experiments; (3) U(VI) sorption/desorption, which affects U(VI) bioavailability at the site, is strongly controlled by kinetics; (4) both pH and bicarbonate concentration significantly influence the sorption/desorption of U(VI), which therefore cannot be characterized by empirical isotherms; and (5) calcium-uranyl-carbonate complexes significantly influence the model performance of U(VI) reduction.  相似文献   
852.
853.
The impact of several factors on the assimilation efficiency (AE) of Cd and Zn from food in the common carp (Cyprinus carpio) was studied. Tested prey species were midge larvae (Chironomus riparius), zebra mussels (Dreissena polymorpha) and oligochaetes (Tubifex tubifex). The Cd load of the larvae did not affect the Cd AE in the carp. The Zn AE however, was negatively related to the Zn load of the prey. Food quantity and starvation of the carp did not significantly affect the Cd AE. For Zn, a significant decrease in AE was found when carp were fed ad libitum. Decreasing the temperature from 25 degrees C to 15 degrees C did not influence the Cd AE, while for Zn a significant decrease of the AE was measured. Carp assimilated Cd from both zebra mussels and oligochaetes with a significantly lower efficiency in comparison to the midge larvae, although Zn AEs was prey independent.  相似文献   
854.
Challenges in quantifying biosphere-atmosphere exchange of nitrogen species   总被引:2,自引:0,他引:2  
Recent research in nitrogen exchange with the atmosphere has separated research communities according to N form. The integrated perspective needed to quantify the net effect of N on greenhouse-gas balance is being addressed by the NitroEurope Integrated Project (NEU). Recent advances have depended on improved methodologies, while ongoing challenges include gas-aerosol interactions, organic nitrogen and N(2) fluxes. The NEU strategy applies a 3-tier Flux Network together with a Manipulation Network of global-change experiments, linked by common protocols to facilitate model application. Substantial progress has been made in modelling N fluxes, especially for N(2)O, NO and bi-directional NH(3) exchange. Landscape analysis represents an emerging challenge to address the spatial interactions between farms, fields, ecosystems, catchments and air dispersion/deposition. European up-scaling of N fluxes is highly uncertain and a key priority is for better data on agricultural practices. Finally, attention is needed to develop N flux verification procedures to assess compliance with international protocols.  相似文献   
855.
Background, Goals and Scope During the last years the miniaturization of toxicity test systems for rapid and parallel measurements of large quantities of samples has often been discussed. For unicellular algae as well as for aquatic macrophytes, fluorescence-based miniaturized test systems have been introduced to analyze photosystem II (PSII) inhibitors. Nevertheless, high-throughput screening should also guarantee the effect detection of a broad range of toxicants in order to ensure routinely applicable, high-throughput measuring device experiments which can cover a broad range of toxicants and modes of action others than PSII inhibition. Thus, the aim of this study was to establish a fast and reproducible measuring system for non-PSII inhibitors for aquatic macrophyte species to overcome major limitations for use. Methods A newly developed imaging pulse-amplitude-modulated chlorophyll fluorometer (I-PAM) was applied as an effect detector in short-term bioassays with the aquatic macrophyte species Lemna minor. This multiwell-plate based measuring device enabled the incubation and measurement of up to 24 samples in parallel. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal care products (PPCPs), which are often detected in the aquatic environment. The I-PAM was used (i) to establish and validate the sensitivity of the test system to the three non-PSII inhibitors, (ii) to compare the test systems with standardized and established biotests for aquatic macrophytes, and (iii) to define necessary time scales in aquatic macrophyte testing. For validation of the fluorescence-based assay, the standard growth test with L. minor (ISO/DIS 20079) was performed in parallel for each chemical. Results The results revealed that fluorescence-based measurements with the I-PAM allow rapid and parallel analysis of large amounts of aquatic macrophyte samples. The I-PAM enabled the recording of concentration-effect-curves with L. minor samples on a 24-well plate with single measurements. Fluorescence-based concentration-effect-curves could be detected for all three chemicals after only 1 h of incubation. After 4–5 h incubation time, the maximum inhibition of fluorescence showed an 80–100% effect for the chemicals tested. The EC50 after 24 h incubation were estimated to be 0.06 mg/L, 0.84 mg/L and 1.69 mg/L for paraquatdichloride, alizarine and triclosan, respectively. Discussion The results obtained with the I-PAM after 24 h for the herbicide paraquat-dichloride and the polycyclic aromatic hydrocarbon alizarine were in good accordance with median effective concentrations (EC50s) obtained by the standardized growth test for L. minor after 7 d incubation (0.09 mg/L and 0.79 mg/L for paraquat-dichloride and alizarine, respectively). Those results were in accordance with literature findings for the two chemicals. In contrast, fluorescence-based EC50 of the antimicrobial agent triclosan proved to be two orders of magnitude greater when compared to the standard growth test with 7 d incubation time (0.026 mg/L) as well as with literature findings. Conclusion Typically, aquatic macrophyte testing is very time consuming and relies on laborious experimental set-ups. The I-PAM measuring device enabled fast effect screening for the three chemicals tested. While established test systems for aquatic macrophytes need incubation times of ≥ 7 d, the I-PAM can detect inhibitory effects much earlier (24 h), even if inhibition of chemicals is not specifically associated with PSII. Thus, the fluorescence-based bioassay with the I-PAM offers a promising approach for the miniaturization and high-throughput testing of chemicals with aquatic macrophytes. For the chemical triclosan, however, the short-term effect prediction with the I-PAM has been shown to be less sensitive than with long-term bioassays, which might be due to physicochemical substance properties such as lipophilicity. Recommendations and Perspectives The results of this study show that the I-PAM represents a promising tool for decreasing the incubation times of aquatic macrophyte toxicity testing to about 24 h as a supplement to existing test batteries. The applicability of this I-PAM bioassay on emergent and submerged aquatic macrophyte species should be investigated in further studies. Regarding considerations that physicochemical properties of the tested substances might play an important role in microplate bioassays, the I-PAM bioassay should either be accompanied by evaluating physicochemical properties modeled from structural information prior to an experimental investigation, or by intensified chemical analyses to identify and determine nominal concentrations of the toxicants tested. The chemicals paraquat-dichloride, alizarine and triclosan were chosen as representatives for the toxicant groups of non-PSII herbicides, PAHs and PPCPs which are often detected in the aquatic environment. Nevertheless, in order to ensure a routinely applicable measuring device, experiments with a broader range of toxicants and samples of surface and/or waste waters are necessary. ESS-Submission Editor: Dr. Markus Hecker (MHecker@Entrix.com)  相似文献   
856.
Goal, Scope and Background One of the advantages of long-term mesocosm experiments as compared to short-term standard toxicity tests in the laboratory is the potential for detecting secondary effects due to the interaction of species and recovery with biomass of macrophytes being an important endpoint. However, generating biomass data by harvesting is often laborious, time-consuming, costly and restricted to the end of the experiment. Moreover, valuable information may get lost, in particular in single application studies, since maximal primary effects and secondary effects or recovery occur per se at different times. Potamogeton natans was used as an example in order to test whether number and area of floating leaves can be reliably measured and be used as intermediate and final endpoints in mesocosm effect studies. Methods Digital photos, which were taken of the water surface in the course of an indoor pond mesocosm study on herbicide effects, were subjected to image analysis. The results were compared to wet weight and ash-free dry weight of Potamogeton at the end of the herbicide study. Results and Discussion Both number and area of floating leaves indicated the same herbicide effects as wet weight and ash-free dry weight of Potamogeton. Error introduced by the different work steps is small and can be further minimised by a number of method improvements. Recommendations and Perspectives In indoor mesocosm studies, errors due to the perspective adjustment may be circumvented by taking the photos perpendicular to the water surface. Correction for lens aberration, identical light conditions and the use of fluorescence images are considered promising. Field applications are proposed.  相似文献   
857.
The behavior of an amperometric organic-phase biosensor consisting of a gold electrode modified first with a mercaptobenzothiazole self-assembled monolayer, followed by electropolymerization of polyaniline in which acetylcholinesterase as enzyme was immobilized, has been developed and evaluated for organophosphorous pesticide detection. The voltammetric results have shown that the formal potential shifts anodically as the Au/MBT/PANI/AChE/PVAc thick-film biosensor responded to acetylthiocholine substrate addition under anaerobic conditions in selected organic solvent media containing 2% v/v 0.05 M phosphate buffer, 0.1 M KCl (pH 7.2) solution. Detection limits in the order of 0.147 ppb for diazinon and 0.172 ppb for fenthion in acetone-saline phosphate buffer solution, and 0.180 ppb for diazinon and 0.194 ppb for fenthion in ethanol-saline phosphate buffer solution has been achieved.  相似文献   
858.
Subsequent to the 1997 promulgation of the Federal Reference Method (FRM) for monitoring fine particulate matter (PM2.5) in ambient air, U.S. Environmental Protection Agency (EPA) received reports that the DOW 704 diffusion oil used in the method's Well Impactor Ninety-Six (WINS) fractionator would occasionally crystallize during field use, particularly under wintertime conditions. Although the frequency of occurrence on a nationwide basis was low, uncertainties existed as to whether crystallization of the DOW 704 oil may adversely affect a sampling event's data quality. In response to these concerns, EPA and the State of Connecticut Department of Environmental Protection jointly conducted a series of specialized tests to determine whether crystallized oil adversely affected the performance of the WINS fractionator. In the laboratory, an experimental setup used dry ice to artificially induce crystallization of the diffusion oil under controlled conditions. Using primary polystyrene latex calibration aerosols, standard size-selective performance tests of the WINS fractionator showed that neither the position nor the shape of the WINS particle size fractionation curve was substantially influenced by the crystallization of the DOW 704 oil. No large particle bounce from the crystallized impaction surface was observed. During wintertime field tests, crystallization of the DOW 704 oil did not adversely affect measured PM2.5 concentrations. Regression of measurements with crystallized DOW 704 versus liquid dioctyl sebacate (DOS) oil produced slope, intercept, and R2 values of 0.98, 0.1, and 0.997 microg/m3, respectively. Additional field tests validated the use of DOS as an effective impaction substrate. As a result of these laboratory and field tests, DOS oil has been approved by EPA as a substitute for DOW 704 oil. Since the field deployment of DOS oil in 2001, users of this alternative oil have not reported any operational problems associated with its use in the PM2.5 FRM. Limited field evaluation of the BGI very sharp cut cyclone indicates that it provides a viable alternative to the WINS fractionator.  相似文献   
859.
A study of climate change and anthropogenic impacts in West Africa   总被引:3,自引:0,他引:3  
BACKGROUND, AIM AND SCOPE: During the last decades ecological conditions in West Africa have dramatically changed. Very evident is the climate change, which has resulted in a southward shift of the climate zones, e.g. a spread of the desert (Sahara) into the Sahelian zone. After the drought period of the early 1970s and 1980s, livestock density increased resulting in an intensification of grazing pressure. This anthropogenous phenomenon leads to similar landscape changes as those caused by the climate. Only very few investigations exist on vegetation dynamics, climate changes and land use changes for the Sudanian zone. The paper presents data on changes of precipitation, of land use, of the geographical range of species, and of the composition of the flora, which have to be regarded as proofs of the sahelisation of large areas of the Sudanian zone. MATERIALS AND METHODS: Area of investigation: Burkina Faso. Precipitation data analysis: precipitation data from 67 stations; time series analysis and geo-statistical spatial interpolation. Analysis of land use change: Landsat satellite MSS and ETM+ data, acquired for two different dates between 1972 and 2001 analyzed by the software ERDAS/IMAGINE version 8.6 and ArcView 3.2 with the Spatial Analyst extension. Intensive ground truthing (160 training areas). Inventory of the flora: based on the data of the Herbarium Senckenbergianum (FR) in Frankfurt, Germany, and of the herbarium of the university of Ouagadougou (OUA), Burkina Faso, as well as on various investigations on the vegetation of Burkina Faso carried out in the years 1990 to 2005 by the team of the senior author. Life form analysis of the flora: based on the inventory of permanent plots. RESULTS AND DISCUSSION: Precipitation: Remarkable latitudinal shift of isohyets towards the South translates to a general reduction of average rainfall in great parts of the country. The last decade (1990-1999) shows some improvement, however, the more humid conditions of the 1950's and 1960's are not yet established again. Landcover change: In the study region the extent of arable fields and young fallows increased during the last 30 years from 580 km(2) in 1972 to 2870 km(2) in 2001. This means an average land cover conversion rate of 0.9% per year for the 6 departments considered. Change of the distribution of Sahelian and Sudanian species: Several species, mentioned in older literature as strictly Sahelian, today also occur in the Sudanian zone. Parallel to the spread of former strictly Sahelian species into the Sudanian zone, some former Sahelo-Sudanian species have withdrawn from the Sahel. Changes of the life form spectra of the flora: Considering their life form spectra, the flora of heavily grazed and of protected areas in the Sudanian zone show great differences. On areas intensively grazed the percentage of therophytes is evidently higher than on protected areas. Just the opposite is true for the phanerophytes. Their percentage is higher on the protected area than on the grazed zones. At the first glance, it is obvious to link the changes in flora and vegetation with the climate changes that have occurred during the last five decades (decrease of annual precipitation). However, not only climatic conditions have changed, but also population has increased, the percentage of land intensively used for agriculture and pasturing has increased and the time for soil regeneration today is much shorter than it was some decades ago. Thus, the landscape of the Sudanian zone has become a more Sahelian character. A comparison of the flora of an intensively used area of the Sudanian zone with that of a protected area shows a remarkable change in the life form spectra. The spectrum of the intensively used area is almost identical with that of the typical Sahelian flora. This comparison shows that the anthropogenic influence plays a greater role in the sahelisation of the Sudanian zone than the climate change. CONCLUSION: Climate change and anthropogenic influence both, lead to a sahelisation of landscape and flora. Thus in many parts of the Sudanian zone of West Africa sahelisation phenomena will remain and even increase independently from the reestablishment of the more humid climate conditions of the 1950ies. RECOMMENDATIONS AND PERSPECTIVES: In order to maintain some parts of the characteristic Sudanian landscape with its characteristic flora and vegetation, the number and size of protected areas should be augmented. For all protected areas it has to be ensured, that protection is reality, i.e. respected an understood by local people, not only fiction. As long as the enlargement of intensively used areas continues the sahelisation of flora, vegetation and landscape will continue too.  相似文献   
860.
Synthesis of polyhydroxyalkanoates in municipal wastewater treatment.   总被引:1,自引:0,他引:1  
Biologically derived polyesters known as polyhydroxyalkanoates (PHAs) represent a potentially "sustainable" replacement to fossil-fuel-based thermoplastics. However, current commercial practices that produce PHA with pure microbial cultures grown on renewable, but refined, feedstocks (i.e., glucose) under sterile conditions do not represent a sustainable commodity. Here, we report on PHA production with a mixed microbial consortium indigenous to an activated sludge process on carbon present in municipal wastewaters. Reactors operated under anaerobic/aerobic and aerobic-only mode and fed primary solids fermenter liquor maintained a mixed microbial consortium capable of synthesizing PHA at 10 to 25% (w/w), while reducing soluble COD by approximately 62 to 71%. More critically, an aerobic batch reactor seeded from the anaerobic/aerobic reactor and fed fermenter liquor achieved approximately 53% PHA (w/w). Results presented suggest that environmentally benign production of biodegradable polymers is feasible. We further used PHA-rich biomass to produce a natural fiber-reinforced thermoplastic composite that can be used to offset advanced wastewater treatment costs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号