首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24263篇
  免费   268篇
  国内免费   261篇
安全科学   787篇
废物处理   1142篇
环保管理   3251篇
综合类   3126篇
基础理论   6207篇
环境理论   7篇
污染及防治   6534篇
评价与监测   1952篇
社会与环境   1624篇
灾害及防治   162篇
  2023年   118篇
  2022年   249篇
  2021年   272篇
  2020年   195篇
  2019年   239篇
  2018年   412篇
  2017年   435篇
  2016年   659篇
  2015年   466篇
  2014年   703篇
  2013年   2096篇
  2012年   839篇
  2011年   1084篇
  2010年   975篇
  2009年   980篇
  2008年   1085篇
  2007年   1189篇
  2006年   1064篇
  2005年   888篇
  2004年   868篇
  2003年   840篇
  2002年   807篇
  2001年   1005篇
  2000年   699篇
  1999年   451篇
  1998年   319篇
  1997年   314篇
  1996年   335篇
  1995年   319篇
  1994年   305篇
  1993年   279篇
  1992年   284篇
  1991年   240篇
  1990年   244篇
  1989年   249篇
  1988年   218篇
  1987年   177篇
  1986年   142篇
  1985年   163篇
  1984年   187篇
  1983年   181篇
  1982年   217篇
  1981年   166篇
  1980年   138篇
  1979年   172篇
  1978年   133篇
  1977年   113篇
  1976年   107篇
  1975年   90篇
  1974年   91篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
911.
Impacts of land cover on stream hydrology in the West Georgia Piedmont, USA   总被引:1,自引:0,他引:1  
The southeastern United States is experiencing rapid urban development. Consequently, Georgia's streams are experiencing hydrologic alterations from extensive development and from other land use activities such as livestock grazing and silviculture. A study was performed to assess stream hydrology within 18 watersheds ranging from 500 to 2500 ha. Study streams were first, second, or third order and hydrology was continuously monitored from 29 July 2003 to 23 September 2004 using InSitu pressure transducers. Rating curves between stream stage (i.e., water depth) and discharge were developed for each stream by correlating biweekly discharge measurements and stage data. Dependent variables were calculated from discharge data and placed into 4 categories: flow frequency (i.e., the number of times a predetermined discharge threshold is exceeded), flow magnitude (i.e., maximum and minimum flows), flow duration (i.e., the amount of time discharge was above or below a predetermined threshold), and flow predictability and flashiness. Fine resolution data (i.e., 15-min interval) were also compared to daily discharge data to determine if resolution affected how streams were classified hydrologically. Urban watersheds experienced flashy discharges during storm events, whereas pastoral and forested watersheds showed less flashy hydrographs. Also, in comparison to all other flow variables, flow frequency measures were most strongly correlated to land cover. Furthermore, the stream hydrology was explained similarly with both the 15-min and daily data resolutions.  相似文献   
912.
Sorption dynamics of organic and inorganic phosphorus compounds in soil   总被引:1,自引:0,他引:1  
Phosphorus retention in soils is influenced by the form of P added. The potential impact of one P compound on the sorption of other P compounds in soils has not been widely reported. Sorption isotherms were utilized to quantify P retention by benchmark soils from Indiana, Missouri, and North Carolina when P was added as inorganic P (Pi) or organic P (beta-D-glucose-6-phosphate, G6P; adenosine 5'-triphosphate, ATP; and myoinositol hexaphosphate, IP6) and to determine whether soil P sorption by these organic P compounds and Pi was competitive. Isotherm supernatants were analyzed for pH and total P using standard protocols, while Pi and organic P compounds were assayed using ion chromatography. Under the controlled conditions of this study, the affinity of all soils for P sources followed the order IP6 > G6P > ATP > Pi. Each organic P source had a different potential to desorb Pi from soils, and the order of greatest to least Pi desorption was G6P > ATP > IP6. Glucose-6-phosphate and ATP competed more directly with Pi for sorption sites than IP6 at greater rates of P addition, but at the lesser rates of P addition, IP6 actually desorbed more Pi. Inositol hexaphosphate was strongly sorbed by all three soils and was relatively unaffected by the presence of other P sources. Decreased total P sorption due to desorption of Pi can be caused by relatively small additions of organic P, which may help explain vertical P movement in manured soils. Sorption isotherms performed using Pi alone did not accurately predict total P sorption in soils.  相似文献   
913.
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.  相似文献   
914.
Long-term water quality records for assessing natural variability, impact of management, and that guide regulatory processes to safeguard water resources are rare for California oak woodland rangelands. This study presents a 20-yr record (1981-2000) of nitrate-nitrogen (NO(3)-N) and suspended sediment export from a typical, grazed oak woodland watershed (103 ha) in the northern Sierra Nevada foothills of California. Mean annual precipitation over the 20-yr period was 734 mm yr(-1) (range 366-1205 mm yr(-1)). Mean annual stream flow was 353 mm y(-1) (range 87-848 mm yr(-1)). Average annual stream flow was 48.1 +/- 16% of precipitation. Mean annual NO(3)-N export was 1.6 kg ha(-1) yr(-1) (range 0.18-3.6 kg ha(-1) yr(-1)). Annual NO(3)-N export significantly (P < 0.05) increased with increasing annual stream flow and precipitation. Mean daily NO(3)-N export was 0.004 kg ha(-1) d(-1) (range 10(-5) to 0.55 kg ha(-1) d(-1)). Mean annual suspended sediment export was 198 kg ha(-1) yr(-1) (range 23-479 kg ha(-1) yr(-1)). There was a positive relationship (P < 0.05) between annual suspended sediment export, annual stream flow and precipitation. Mean daily suspended sediment export was 0.54 kg ha(-1) d(-1) (range 10(-4) to 155 kg ha(-1) d(-1)). Virtually no sediment was exported during the dry season. The large variation in daily and annual fluxes highlights the necessity of using long-term records to establish quantitative water quality targets for rangelands and demonstrates the difficulty of designing a water quality monitoring program for these ecosystems.  相似文献   
915.
Recent adoption of national rules for organic crop production have stimulated greater interest in meeting crop N needs using manures, composts, and other organic materials. This study was designed to provide data to support Extension recommendations for organic amendments. Specifically, our objectives were to (i) measure decomposition and N released from fresh and composted amendments and (ii) evaluate the performance of the model DECOMPOSITION, a relatively simple N mineralization/immobilization model, as a predictor of N availability. Amendment samples were aerobically incubated in moist soil in the laboratory at 22 degrees C for 70 d to determine decomposition and plant-available nitrogen (PAN) (n = 44), and they were applied preplant to a sweet corn crop to determine PAN via fertilizer N equivalency (n = 37). Well-composted materials (n = 14) had a single decomposition rate, averaging 0.003 d(-1). For uncomposted materials, decomposition was rapid (>0.01 d(-1)) for the first 10 to 30 d. The laboratory incubation and the full-season PAN determination in the field gave similar estimates of PAN across amendments. The linear regression equation for lab PAN vs. field PAN had a slope not different from one and a y-intercept not different than zero. Much of the PAN released from amendments was recovered in the first 30 d. Field and laboratory measurements of PAN were strongly related to PAN estimated by DECOMPOSITION (r(2) > 0.7). Modeled PAN values were typically higher than observed PAN, particularly for amendments exhibiting high initial NH(4)-N concentrations or rapid decomposition. Based on our findings, we recommend that guidance publications for manure and compost utilization include short-term (28-d) decomposition and PAN estimates that can be useful to both modelers and growers.  相似文献   
916.
Micro-X-ray fluorescence (micro-XRF) microprobe analysis and micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy were employed to identify Fe and Mn phases and their association with selected metals in two biosolids (limed composted [LC] and Nu-Earth) before and after treatment to remove organic carbon (OC). Spatial correlations derived from elemental mapping of XRF images showed strong correlations between Fe and Cd, Cr, Pb, or Zn (r2= 0.65-0.92) before and after removal of most of the OC. The strong correlation between Fe and Cu that was present in intact samples disappeared after OC removal, suggesting that Cu was associated with OC coatings that may have been present on Fe compounds. Except for Fe and Cr, the spatial correlations of metals with Mn were improved after treatment to remove OC, indicating that the treatment may have altered more than the OC in the system. The Fe micro-XANES spectra of the intact biosolids sample showed that every point had varying mixtures of Fe(II and III) species and no two points were identical. The lack of uniformity in Fe species in the biosolids sample illustrates the complexity of the materials and the difficulty of studying biosolids using conventional analytical tools or chemical extraction techniques. Still, these microscopic observations provide independent information supporting the previous laboratory and field hypothesis that Fe compounds play a major role in retention of environmentally important trace elements in biosolids. This could be due to co-precipitation of the metals with Fe, adsorption of metals by Fe compounds, or a combination of both mechanisms.  相似文献   
917.
The typical method of cool-season grass-seed production in Mediterranean climates briefly exposes surface waters to potentially high concentrations of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] during the initial season of growth. To better understand the process, and the degree, of diuron transport from agricultural fields, two grass-seed fields in the Willamette Valley of Oregon were monitored for diuron loss in surface runoff and tile drainage during the first wet season after planting. Initial diuron concentrations in surface runoff were high (>1000 microg L(-1) in one field and >100 microg L(-1) in the other), though they decreased by two orders of magnitude by the end of the season. Concentrations in the tile drains were as much as 1000 times lower than in the surface runoff during the first few weeks of runoff events, and they remained lower than surface water concentrations throughout the season. Total losses in surface runoff were between 1.3 and 3% of the amount applied-much higher than losses via the tile drains. It is also shown by means of a simple first-order decay model that, when little information is available, it may be best to describe diuron depletion in runoff water as a function of cumulative rainfall during the wet season.  相似文献   
918.
Forage-based livestock systems have been implicated as major contributors to deteriorating water quality, particularly for phosphorus (P) from commercial fertilizers and manures affecting surface and ground water quality. Little information exists regarding possible magnitudes of nutrient losses from pastures that are managed for both grazing and hay production and how these might impact adjacent bodies of water. We examined the changes that have occurred in soil fertility levels of rhizoma peanut (Arachis glabrata Benth.)-based beef cattle pastures (n = 4) in Florida from 1988 to 2002. These pastures were managed for grazing in spring followed by haying in late summer and were fertilized annually with P (39 kg P2O5 ha(-1)) and K (68 kg K2O ha(-1)). Additionally, we investigated trends in water quality parameters and trophic state index (TSI) of lakes (n = 3) associated with beef cattle operations from 1993 to 2002. Overall, there was no spatial or temporal buildup of soil P and other crop nutrients despite the annual application of fertilizers and daily in-field loading of animal waste. In fact, soil fertility levels showed a declining trend for crop nutrient levels, especially soil P (y = 146.57 - 8.14 x year; r2= 0.75), even though the fields had a history of P fertilization and the cattle were rotated into the legume fields. Our results indicate that when nutrients are not applied in excess, cow-calf systems are slight exporters of P, K, Ca, and Mg through removal of cut hay. Water quality in lakes associated with cattle production was "good" (30-46 TSI) based on the Florida Water Quality Standard. These findings indicate that properly managed livestock operations may not be major contributors to excess loads of nutrients (especially P) in surface water.  相似文献   
919.
Soluble salts, nutrients, and pathogenic bacteria in feedlot-pen runoff have the potential to cause pollution of the environment. A 2-yr study (1998-1999) was conducted at a beef cattle (Bos taurus) feedlot in southern Alberta, Canada, to determine the effect of bedding material [barley (Hordeum vulgare L.) straw versus wood chips] and within-pen location on the chemical and bacterial properties of pen-floor runoff. Runoff was generated with a portable rainfall simulator and analyzed for chemical content (nitrogen [N], phosphorus [P], soluble salts, electrical conductivity [EC], sodium adsorption ratio [SAR], dissolved oxygen [DO], and pH) and populations of three groups of bacteria (Escherichia coli, total coliforms, total aerobic heterotrophs at 27 degrees C) in 1998 and 1999. Bedding had a significant (P < or = 0.05) effect on NH4-N concentration and load in 1999, SO4 load in 1998, SO4 concentration and load in 1999, and total coliforms in both years; where these three variables were higher in wood than straw pens. Location had a significant effect on EC and concentrations of total Kjeldahl nitrogen (TKN), Na, K, SO4, and Cl in 1998, and total coliforms in both years. These seven variables were higher at the bedding pack than pen floor location, indicating that bedding packs were major reservoirs of TKN, soluble salts, and total coliforms. Significantly higher dissolved reactive phosphorus (DRP), total P, and NH4-N concentrations and loads at the bedding pack location in wood pens in 1998, and a similar trend for TKN concentration in 1999, indicated that this bedding-location treatment was a greater source of nutrients to runoff than the other three bedding-location treatments. Bedding, location, and their interaction may therefore be a potential tool to manage nutrients, soluble salts, and bacteria in feedlot runoff.  相似文献   
920.
Fresh beef cattle (Bos taurus) manure has traditionally been applied to cropland in southern Alberta, but there has been an increase in application of composted manure to cropland in this region. However, the quality of runoff under fresh manure (FM) versus composted manure (CM) has not been investigated. Our objective was to compare runoff quality under increasing rates (0, 13, 42, 83 Mg ha(-1) dry wt.) of FM and CM applied for two consecutive years to a clay loam soil cropped to irrigated barley (Hordeum vulgare L.). We determined total phosphorus (TP), particulate phosphorus (PP), dissolved reactive phosphorus (DRP), total nitrogen (TN), NH4-N, and NO3-N concentrations and loads in runoff after one (1999) and two (2000) applications of FM and CM. We found significantly (P < or = 0.05) higher TP, DRP, and NH4-N concentrations, and higher DRP and TN loads under FM than CM after 2 yr of manure application. The TP loads were also higher under FM than CM at the 83 Mg ha(-1) rate in 2000, and DRP loads were higher for FM than CM at this high rate when averaged over both years. Application rate had a significant effect on TP and DRP concentrations in runoff. In addition, the slope values of the regressions between TP and DRP in runoff versus application rate were considerably higher for FM in 2000 than for FM in 1999, and CM in both 1999 and 2000. Significant positive relationships were found for TP and DRP in runoff versus soil Kelowna-extractable P and soil water-extractable P for FM and CM in 2000, indicating that interaction of runoff with the soil controlled the release of P. Total P and DRP were the variables most affected by the treatments. Overall, our study found that application of CM rather than FM to cropland may lower certain forms of P and N in surface runoff, but this is dependent on the interaction with year, application rate, or both.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号