首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
安全科学   1篇
废物处理   1篇
环保管理   1篇
综合类   1篇
基础理论   7篇
污染及防治   18篇
评价与监测   7篇
社会与环境   1篇
  2023年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   7篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2004年   1篇
  1992年   2篇
  1991年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
31.
The Serbian National Waste Management Strategy for the Period 2010–2019, harmonized with the European Union Directives, mandates new and very strict requirements for landfill sites. To enable analysis of a number of required qualitative and quantitative factors for landfill site selection, the traditional method of site selection must be replaced with a new approach. The combination of GIS and the Analytic Hierarchy Process (AHP) was selected to solve this complex problem. The Srem region in northern Serbia, being one of the most environmentally sensitive areas, was chosen as a case study. Seventeen factors selected as criteria/sub-criteria were recognized as most important, divided into geo-natural, environmental, social and techno-economic factors, and were evaluated by experts from different fields using an AHP extension in Arc GIS. Weighted spatial layers were combined into a landfill suitability map which was then overlapped with four restriction maps, resulting in a final suitability map. According to the results, 82.65% of the territory of Srem is unsuitable for regional landfill siting. The most suitable areas cover 9.14%, suitable areas 5.24%, while areas with low and very low suitability cover 2.21 and 0.76% of the territory, respectively. Based on these findings, five sites close to two large urban agglomerations were suggested as possible locations for a regional landfill site in Srem. However, the final decision will require further field investigation, a public acceptance survey, and consideration of ownership status and price of the land.  相似文献   
32.

Purpose

Combinatorial bio/chemical approach was applied to investigate dioxin-like contamination of soil and sediment at the petrochemical and organochlorine plant in Pancevo, Serbia, after the destruction of manufacturing facilities that occurred in the spring of 1999 and subsequent remediation actions.

Materials and methods

Soil samples were analyzed for indicator polychlorinated biphenyls (PCBs) by gas chromatography/electron capture detection (GC/ECD). Prioritized soil sample and sediment samples from the waste water channel were analyzed for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). Microethoxyresorufin o-deethylase (Micro-EROD) and H4IIE?Cluciferase bioassays were used for monitoring of dioxin-like compounds (DLC) and for better characterization of dioxin-like activity of soil samples.

Results

Bioanalytical results indicated high dioxin-like activity in one localized soil sample, while the chemical analysis confirmed the presence of large quantities of DLC: 3.0?×?105 ng/g d.w. of seven-key PCBs, 8.2 ng/g d.w. of PCDD/Fs, and 3.0?×?105 ng/g d.w. of planar and mono-ortho PCBs. In the sediment, contaminant concentrations were in the range 2?C8 ng/g d.w. of PCDD/Fs and 9?C20 ng/g d.w. of PCBs.

Conclusions

This study demonstrates the utility of combined application of bioassays and instrumental analysis, especially for developing and transition country which do not have capacity of the expensive instrumental analysis. The results indicate the high contamination of soil in the area of petrochemical plant, and PCDD/Fs contamination of the sediment from the waste water channel originating from the ethylene dichloride production.  相似文献   
33.
GOAL, SCOPE AND BACKGROUND: During the Balkan conflict in 1999, soil in contaminated areas was enriched in depleted uranium (DU) isotopic signature, relative to the in-situ natural uranium present. After the military activities, most of kinetic DU penetrators or their fragments remained buried in the ground in certain geomorphological and geochemical environments exposed to local weathering conditions. The contamination distribution, mobility and/or fixation of DU in the contaminated soil profile at one hot spot were the subject of our study. The results should disclose what happened with released DU corrosion products in three years elapsed, given the scope of their geochemical fractionation, and mark out the most probable host substrates in investigated soil type. METHODS: Gamma-spectrometric analysis of soil samples taken in the DU penetrator impact-zone was done to obtain present contamination levels. Set of samples is subjected to five-step and three-step sequential extraction procedures, specifically selective to different physical/chemical associations in soil. The stable elements are determined in extracts by the atomic absorption spectroscopy. After the ion-exchange based uranium separation procedure, alpha-spectrometric analysis of obtained fractions was done and DU distribution in five extraction phases found from 235U/238U and 234U/238U isotopic ratios. RESULTS: Depleted uranium concentration falls down to the 1% of the initial value, at approximately 150 mm distance to the source. Carbonates and iron/manganese hydrous oxides are indicated as the most probable substrates for depleted uranium in the characterized soil type. Therefore, in the highly contaminated soil samples, depleted uranium is still weakly bonded and easy exchangeable. The significant levels of organic-bonded depleted uranium are found in surface soil only. DISCUSSION: Dependence of the fractionation on the contamination levels is evident. Samples with higher DU contents have shown a longer maintenance in the exchangeable phases, probably because adsorption/desorption mass transfer through the medium was not very fast. Organic-bonded, depleted uranium is present in surface soil samples due to its higher humus content. Considering geochemical composition of investigated soil, the indicating chemical associations as substrates are in agreement with some considerations based on the results for low-level waste unsaturated zones. CONCLUSIONS: The soil contamination with depleted uranium in investigated area is still 'spot' type and not widespread. Dependence of the fractionation on the contamination levels and presence of weakly bonded, depleted uranium in the hot spots areas is evident. RECOMMENDATIONS AND PERSPECTIVES: A detailed study may be undertaken with suitable extractive reagents to define a bio-available fraction of depleted uranium in soil. The comparison of results for different soil types investigated by the same methodology may be useful. An applied combination of physical/chemical procedures and analysis may help in the decision making on the remediation strategy for sites contaminated with depleted uranium used in military operations.  相似文献   
34.
BACKGROUND, AIM, AND SCOPE: The paper presents the complex approach to the assessment of the state of the environment in Southern Serbia, surroundings of Bujanovac, the region which is of great concern as being exposed to contamination by depleted uranium (DU) ammunition during the North Atlantic Treaty Organization (NATO) attacks in 1999. It includes studies on concentrations of radionuclides and heavy metals in different environmental samples 5 years after the military actions. MATERIALS AND METHODS: In October 2004, samples of soil, grass, lichen, moss, honey, and water were collected at two sites, in the immediate vicinity of the targeted area and 5 km away from it. Radionuclide ((7)Be, (40)K, (137)Cs, (210)Pb, (226)Ra, (232)Th, (235)U, (238)U) activities in solid samples were determined by standard gamma spectrometry and total alpha and beta activity in water was determined by proportional alpha-beta counting. Concentrations of 35 elements were determined in the samples of soil, moss, grass, and lichen by instrumental neutron activation analysis (INAA). RESULTS: The results are discussed in the context of a possible contamination by DU that reached the environment during the attacks as well as in the context of an environmental pollution by radionuclides and heavy metals in Southern Serbia. The results are compared to the state of environment in the region and other parts of the country both prior to and following the attacks. DISCUSSION: This is the first comprehensive study of the contents of radionuclides and heavy metals in Southern Serbia and consequently highly important for the assessment of the state of environment in this part of the country concerning possible effects of DU ammunition on the environment, as well as anthropogenic source of pollution by radionuclides and heavy metals and other elements. Also, the highly sensitive method of INAA was used for the first time to analyze the environmental samples from this area. CONCLUSIONS: The results of the study of radionuclides in the samples of soils, leaves, grass, moss, lichen, honey, and water in Southern Serbia (Bujanovac) gave no evidence of the DU contamination of the environment 5 years after the military actions in 1999. Activities of radionuclides in soils were within the range of the values obtained in the other parts of the country and within the global average. The ratio of uranium isotopes confirmed the natural origin of uranium. In general, concentrations of heavy metals in the samples of soils, plant leaves, mosses, and lichen are found to be less or in the lower range of values found in other parts of the country, in spite of the differences in plant and moss species or soil characteristics. Possible sources of heavy metal contamination were identified as a power coal plant in the vicinity of the sampling sites and wood and waste burning processes. RECOMMENDATIONS AND PERSPECTIVES: The collected data should provide a base for the health risk assessments on animals and humans in the near future. It should be emphasized that the sampling was carried out 5 years after the military action and that the number of samples was limited; therefore, the conclusions should be accepted only as observed tendencies and a detailed study should be recommended in the future.  相似文献   
35.
Polycyclic aromatic hydrocarbons (PAHs) were analysed in 39 soil samples (0–10 cm upper layer) collected in Belgrade, the capital of Serbia. The sampling sites were randomly selected from urban, urban/recreational and rural areas; the samples were collected in April and December 2003 and July and October 2004. The sum of the 16 PAHs corresponding to the recreational zone (298 μg/kg) was close to the urban zone (375 μg/kg). Mean soil ΣPAH concentration from rural areas was 18 μg/kg dry weight. Comparing to values observed in the urbanized locations around the world, the overall levels of PAHs in this study are low. The PAH ratios obtained pointed to a domination of pyrogenically formed PAHs in the examined soils. The dominant PAHs in soil samples in urban zones were fluoranthene, benz[a]anthracene, phenanthrene and pyrene, mostly emitted from noncatalyst vehicles which are still in use in Serbia. The total carcinogenic potency for each sampling site was calculated. Regardless of the used carcinogenic activity factors, carcinogenic potency of 7 sites were 3–9 times higher than the reference ones indicating the increased carcinogenic burden of soils from these sites.  相似文献   
36.
Environmental Science and Pollution Research - This study describes the development of tool for testing different policies for reduction of greenhouse gas (GHG) emissions in energy sector using...  相似文献   
37.
INTENTION, GOAL, SCOPE, BACKGROUND: As the strong negative health effect of exposure to the inhalable particulate matter PM10 in the urban environment has been confirmed, the study of the mass concentrations, physico-chemical characteristics, sources, as well as spatial and temporal variation of atmospheric aerosol particles becomes very important. OBJECTIVE: This work is a pilot study to assess the concentration level of ambient suspended particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade central urban area. Average daily concentrations of PM10 and PM2.5 have been measured at three representative points in the city between June 2002 and December 2002. The influence of meteorological parameters on PM10 and PM2.5 concentrations was analyzed, and possible pollution sources were identified. METHODS: Suspended particles were collected on Pure Teflon filters by using a Mini-Vol low-volume air sampler (Airmetrics Co., Inc.; 5 l min(-1) flow rate). Particle mass was determined gravimetrically after 48 h of conditioning in a desiccator, in a Class 100 clean room at the temperature T = 20 degrees C and at about 50% constant relative humidity (RH). RESULTS AND DISCUSSION: Analysis of the PM10 data indicated a marked difference between season without heating--(summer; mean value 56 microg m(-3)) and heating season--(winter; mean value 96 microg m3); 62% of samples exceeded the level of 50 microg m(-3). The impact of meteorological factors on PM concentrations was not immediately apparent, but there was a significant negative correlation with the wind speed. CONCLUSIONS: The PM10 and PM2.5 mass concentrations in the Belgrade urban area had high average values (77 microg m(-3) and 61 microg m(-3)) in comparison with other European cities. The main sources of particulate matter were traffic emission, road dust resuspension, and individual heating emissions. When the air masses are coming from the SW direction, the contribution from the Obrenovac power plants is evident. During days of exceptionally severe pollution, in both summer and winter periods, high production of secondary aerosols occurred, as can be seen from an increase in PM2.5 in respect to PM10 mass concentration. RECOMMENDATION AND OUTLOOK: The results obtained gave us the first impression of the concentration level of particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade ambient air. Due to measured high PM mass concentrations, it is obvious that it would be very difficult to meet the EU standards (EEC 1999) by 2010. It is necessary to continue with PM10 and PM2.5 sampling; and after comprehensive analysis which includes the results of chemical and physical characterization of particles, we will be able to recommend effective control measures in order to improve air quality in Belgrade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号