首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   1篇
安全科学   12篇
废物处理   12篇
环保管理   14篇
综合类   26篇
基础理论   43篇
污染及防治   65篇
评价与监测   21篇
社会与环境   7篇
  2023年   3篇
  2022年   8篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   15篇
  2017年   9篇
  2016年   8篇
  2015年   9篇
  2014年   15篇
  2013年   29篇
  2012年   15篇
  2011年   11篇
  2010年   12篇
  2009年   8篇
  2008年   4篇
  2007年   6篇
  2006年   8篇
  2005年   1篇
  2003年   2篇
  2002年   3篇
  1997年   1篇
  1995年   4篇
  1991年   1篇
  1989年   1篇
  1983年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1970年   1篇
  1961年   2篇
  1958年   1篇
  1956年   2篇
  1954年   1篇
  1938年   1篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
111.
Mosses and lichens have an important role in biomonitoring. The objective of this study is to develop a neural network model to classify these plants according to geographical origin. A three-layer feed-forward neural network was used. The activities of radionuclides ((226)Ra, (238)U, (235)U, (40)K, (232)Th, (134)Cs, (137)Cs and (7)Be) detected in plant samples by gamma-ray spectrometry were used as inputs for neural network. Five different training algorithms with different number of samples in training sets were tested and compared, in order to find the one with the minimum root mean square error. The best predictive power for the classification of plants from 12 regions was achieved using a network with 5 hidden layer nodes and 3,000 training epochs, using the online back-propagation randomized training algorithm. Implementation of this model to experimental data resulted in satisfactory classification of moss and lichen samples in terms of their geographical origin. The average classification rate obtained in this study was (90.7 +/- 4.8)%.  相似文献   
112.
Dissolved organic carbon (DOC), surface active substances (SAS) and copper complexing capacity (CuCC) were studied in bulk precipitations collected periodically from 2003 to 2007 in the continental city of Croatia (Zagreb: n = 27) and in the city at the Adriatic coast (?ibenik: n = 38). DOC concentrations (Zagreb: 0.67–4.03 mgC/L with average concentration of 1.93 ± 0.76 mgC/L; ?ibenik: 0.44–4.13 mgC/L with average concentration of 1.83 ± 0.83 mgC/L) are similar to those measured in other samples of continental rainwater in the northern hemisphere. The concentrations of SAS in samples from Zagreb ranged from 0.055 to 0.45 eq. Triton-X-100 mg/L with average concentration of (0.14 ± 0.06) eq. Triton-X-100 mg/L. SAS fractions were of a similar range in ?ibenik (0.02–0.60 eq. Triton-X-100 mg/L) with an average concentration of 0.11 ± 0.06 eq. Triton-X-100 mg/L. However, the lowest values of SAS (between 0.02 and 0.04 eq. Triton-X-100 mg/L) were observed only in ?ibenik (27%). We have estimated that the higher pH values were responsible for lower surface activity of organic matter in bulk samples from ?ibenik. DOC may form complexes that control the transport and solubility of heavy metals in natural water. CuCC measured in ?ibenik in the range 0.066–1.4 μM Cu2+ was in general higher, compared to the one in Zagreb (0.010–0.586 μM Cu2+) which is the result of biogenically driven organic contribution to the precipitation, especially in the warmer period of the year.  相似文献   
113.
Multiple production and demand side measures are needed to improve food system sustainability. This study quantified the theoretical minimum agricultural land requirements to supply Western Europe with food in 2050 from its own land base, together with GHG emissions arising. Assuming that crop yield gaps in agriculture are closed, livestock production efficiencies increased and waste at all stages reduced, a range of food consumption scenarios were modelled each based on different ‘protein futures’. The scenarios were as follows: intensive and efficient livestock production using today’s species mix; intensive efficient poultry–dairy production; intensive efficient aquaculture–dairy; artificial meat and dairy; livestock on ‘ecological leftovers’ (livestock reared only on land unsuited to cropping, agricultural residues and food waste, with consumption capped at that level of availability); and a ‘plant-based eating’ scenario. For each scenario, ‘projected diet’ and ‘healthy diet’ variants were modelled. Finally, we quantified the theoretical maximum carbon sequestration potential from afforestation of spared agricultural land. Results indicate that land use could be cut by 14–86 % and GHG emissions reduced by up to approximately 90 %. The yearly carbon storage potential arising from spared agricultural land ranged from 90 to 700 Mt CO2 in 2050. The artificial meat and plant-based scenarios achieved the greatest land use and GHG reductions and the greatest carbon sequestration potential. The ‘ecological leftover’ scenario required the least cropland as compared with the other meat-containing scenarios, but all available pasture was used, and GHG emissions were higher if meat consumption was not capped at healthy levels.  相似文献   
114.
Environmental Science and Pollution Research - Bivalve molluscs represent the most recognized bioindicators of freshwater pollution. However, their ability to indicate specific xenobiotics in...  相似文献   
115.
Environmental Science and Pollution Research - The Moravian-Silesian region of the Czech Republic with its capital city Ostrava is a European air pollution hot spot for airborne particulate matter...  相似文献   
116.
117.
118.
The main objective of this paper is to evaluate how a choice of different background values may affect assessing the anthropogenic heavy metal pollution in sediments from Tisza River (Serbia). The second objective of this paper is to underline significance of using geochemical background values when establishing quality criteria for sediment. Enrichment factor (EF), geoaccumulation index (I geo), pollution load index (PLI), and potential ecological risk index (PERI) were calculated using different background values. Three geochemical (average metal concentrations in continental crust, average metal concentrations in shale, and average metal concentrations in non-contaminated core sediment samples) and two statistical methods (delineation method and principal component analyses) were used for calculating background values. It can be concluded that obtained information of pollution status can be more dependent on the use of background values than the index/factor chosen. The best option to assess the potential river sediment contamination is to compare obtained concentrations of analyzed elements with concentrations of mineralogically and texturally comparable, uncontaminated core sediment samples. Geochemical background values should be taken into account when establishing quality criteria for soils, sediments, and waters. Due to complexity of the local lithology, it is recommended that environmental monitoring and assessment include selection of an appropriate background values to gain understanding of the geochemistry and potential source of pollution in a given environment.  相似文献   
119.
The present work was designed as an extension of a previous study of a barium anomaly observed in stream sediments of the Kupa River. In its upper part the Kupa River drains a region underlain by a trans-boundary aquifer. The river is a significant water resource in a region of tourism, sport, and fishing in both Croatia and Slovenia. The contamination source is situated in Homer (Lokve), Croatia, where barite was mined until 10 years ago. The barium processing waste material (<3-mm fraction) was carelessly deposited in gardens, forests, and into a sinkhole, which has an underground link with the Kupica River, a tributary of the Kupa River. Barium waste and stream sediments were analyzed using comparative techniques: X-ray diffraction (XRD), X-ray fluorescence (XRF), Mössbauer spectroscopy, and grain size analysis. XRD of the waste material identified the major minerals quartz, barite, and dolomite and the Fe-containing minor minerals muscovite and goethite. Barite was identified as a minor or trace mineral in the Kupica River sediments. XRF analysis of the waste material has shown Ba and Fe to be the predominant elements, Ca and K to be minor elements, and Mn, Zn, Sr, Pb, Co, Cu, As, Zr, Rb, Y, and Mo to be trace elements. Mössbauer spectroscopy performed at room temperature (RT) was used to study iron minerals, particularly to obtain information on the valence status of Fe ions. Grain size analysis of the waste material (<63-μm fraction) has shown that it contains 23.5% clay-size material in comparison with 7–8% clay-size material in stream sediments. It is our aim to combine geochemical and medical methods to investigate the possible impact of waste disposal on human health in Lokve. At this stage of the work, concentrations of Ba and other toxic elements in the water compartment of the Kupica River (a source of drinking water) have not been monitored by Croatian Waters (name of the Croatian water authorities). The necessity of such measurements in future studies has been highlighted. A preliminary study of diseases diagnosed in Lokve shows that about 18% of the total inhabitants have serious medical problems. Diseases of the circulatory system, endocrine, nutritional, and metabolic diseases, neoplasms, and respiratory diseases predominate. This paper calls for further multidisciplinary research on the health effects of barium and trace elements, as well as for bioremediation of contaminated gardens and for watershed management of vulnerable karstic aquifers.  相似文献   
120.
The activity concentrations of natural radionuclides in soils from the area affected by uranium mining at Stara Planina Mountain in Serbia were studied and compared with the results obtained from an area with no mining activities (background area). In the affected area, the activity concentrations ranged from 1.75 to 19.2 mg kg?1 for uranium and from 1.57 to 26.9 mg kg?1 for thorium which is several-fold higher than those in the background area. The Th/U, K/U, and K/Th activity ratios were also determined and compared with data from similar studies worldwide. External gamma dose rate in the air due to uranium, thorium, and potassium at 1 m above ground level in the area affected by uranium mining was found to be 91.3 nGy h?1, i.e., about two-fold higher than that in background area. The results of this preliminary study indicate the importance of radiological evaluation of the area and implementation of remedial measures in order to prevent further dispersion of radionuclides in the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号