首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   3篇
  国内免费   4篇
安全科学   3篇
废物处理   15篇
环保管理   27篇
综合类   14篇
基础理论   47篇
污染及防治   64篇
评价与监测   21篇
社会与环境   13篇
灾害及防治   2篇
  2023年   4篇
  2022年   16篇
  2021年   13篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   11篇
  2016年   10篇
  2015年   7篇
  2014年   6篇
  2013年   14篇
  2012年   6篇
  2011年   13篇
  2010年   14篇
  2009年   8篇
  2008年   10篇
  2007年   10篇
  2006年   14篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2001年   5篇
  1999年   1篇
  1998年   2篇
  1994年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1966年   2篇
排序方式: 共有206条查询结果,搜索用时 62 毫秒
71.
The effects of varying concentrations of urea, phosphogypsum and paper mill sludge (PMS) on the morphology, histology, tissue protein content, lipid peroxidation (LPX), activities of lactate dehydrogenase (LDH), acetylcholinesterase (AChE) and catalase in earthworms Drawida willsi and Lampito mauritii have been studied over an exposure period of 24?hr. Integumentary lesions, clitellar swelling and loss of pigmentations were found to be major morpho-pathological changes in the worms. Histology indicated cuticular damage, ruptured epithelium and muscle fibres with accumulation of cellular debris. Lowest tissue protein content (57.02?±?4.02?mg/g tissue) and highest LPX (0.113?±?0.04, 0.137?±?0.08?nmol/mg protein) were noticed in D. willsi at a high concentration of PMS, whereas highest tissue protein content was observed in L. mauritii (115.32?±?7.18?mg/g tissue) with the same treatment. In both the species, LDH activity was minimum at a high concentration of urea (0.172?±?0.02; 0.247?±?0.08?U/mg protein). AChE activity was highest (0.099?±?0.002?U/mg protein) at a high concentration of PMS in D. willsi, whereas catalase activity was the maximum (0.338?±?0.02?U/mg protein) at high concentrations of PMS in L. mauritii. The study indicated that morpho-histological and enzymatic alterations in these earthworms exposed to agrochemicals could be useful biomarkers to evaluate soil toxicity.  相似文献   
72.
Isoproturon (IPU)-degrading soil bacteria were isolated from herbicide-applied wheat fields. These isolates were identified using cultural, morphological, biochemical and 16S rRNA sequencing methods. 16S rRNA sequences of both the bacterial isolates were compared with NCBI GenBank data base and identified as Bacillus pumilus and Pseudoxanthomonas sp. A soil microcosm study was carried out for 40 days in six different treatments. Experimental results revealed maximum 95.98% IPU degradation in treatment 6 where bacterial consortia were augmented in natural soil, followed by 91.53% in treatment 5 enriched with organic manure as an additional carbon source. However, only 14.03% IPU was degraded in treatment 1 (control) after 40 days. In treatments (2–4), 75.59%, 70.92% and 77.32% IPU degradation was recorded, respectively. IPU degradation in all the treatments varied significantly over the control. 4-Isopropylaniline was detected as IPU degradation by-product in the medium. The study confirmed that B. pumilus and Pseudoxanthomonas sp. performed effectively in soil microcosms and could be employed profitably for field-scale bioremediation experiments.  相似文献   
73.
Present investigation was done to evaluate various algal genera found in water bodies of Varanasi city. The potential of any biomass for biofuels (bioalcohols, biohydrogen, etc.) production depends on the quantity of extractable sugar present in it. Acid (H2SO4) and alkali (NaOH) pretreatment were performed, and H2SO4 was chosen due to its nearly double yield as compared with alkaline pretreatment. Response surface methodology was utilized for the optimization of operating parameters such as treatment temperature, time, and acid concentration. Sugar yield up to 0.33 g/g of dry biomass was obtained using cyanobacterial biomass of Lyngbya limnetica, at 100°C, 59.19 min, and H2SO4 concentration of 1.63 M.  相似文献   
74.
A commercial formulation of composted municipal solid wastes (MSW) was used for amending soil at 0, 50, 100, 150, 200 and 250 kg ha−1 in which wheat had been grown (field experiments) and element residues of amended soil and plant parts were enumerated. MSW amendment caused a significant improvement in soil quality. Growth (shoot length, leaf number, leaf area, tiller number, plant dry weight and chlorophyll contents of leaves) and yield (length of panicle, number of panicles per plant and grain yield per plant) of wheat increased gradually up to the MSW-amendment level of 200 kg ha−1. Elements, Ni, Zn, Cu, Cd, Cr, and Pb accumulated in plants from MSW amended soil, but the degree of metal accumulation was the least in seeds in comparison to other plant parts (root, stem and leaf). Moreover, Ni, Zn, Cd and Pb, were in high concentration in all plant parts. It is recorded that the level of 200 kg ha−1 MSW amendment caused better growth and yield of wheat, but progressive levels of metal accumulation in plant parts were recorded due to increase in amendment levels. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   
75.
Heavy metal removal from contaminated sludge for land application: a review   总被引:17,自引:0,他引:17  
In recent years, various methods for heavy metal removal from sewage sludge have been extensively studied in order to minimize the prospective health risks of sludge during land application. In this paper, a comparative review and critical analysis of the application of chemical extraction, bioleaching, electroreclamation, and supercritical fluid extraction (SFE), in removing heavy metals from contaminated sludges is presented. Moreover, speciation studies, which can indicate ease of leachability of the different forms of heavy metals in sludge, are also presented. Experimental studies revealed a broad range in metal extraction efficiencies of the different extraction technologies. Acid treatment seemed to effectively remove Cd, attaining as much as 100% removal for some studies, as compared to bioleaching. SFE also gave higher removal efficiency than bioleaching. Cr, Pb and Ni seemed to be also effectively removed by the acid treatment. For the removal of Cu, Mn and Zn, the bioleaching process seemed to be appropriate with maximum removal efficiencies of 91%, 93% and 96% for the three metals, respectively, and as high as 64% minimum removal efficiency for Zn. The SFE process also gave good results for Cu, Mn and Zn removal. Electroreclamation exhibited better removal efficiency for Mn, but is still inferior to acid treatment and bioleaching processes. For chemical extraction, because of the adverse impacts that can result from the use of inorganic acids and complexing agents, interest can be directed more toward utilizing organic acids as extracting agents because of their biodegradability and capability to remove metals at mildly acidic condition, hence requiring less acid. The bioleaching process, although it seems to give a higher yield of metal extraction with lower chemical cost than chemical extraction, may be limited by the inability of the system to cope with the natural environmental conditions, requires strict monitoring of aeration rate and temperature and has applicability to only low sludge solids concentration. A full-scale study would be useful to better assess the efficiency of the process. The electroreclamation technology is limited by its relatively higher energy consumption and limited applicability to sludge. The SFE method, on the other hand, is limited by the complexity of the process and the cost of ligands suitable for effective metal extraction. Both of these technologies are still in their early stage of application and hence there is a need for further basic and applied studies. Finally, the common advantage for almost all treatment technologies studied is that the extraction efficiencies for some metals are high enough to remove metals from sludge to levels suitable for land application.  相似文献   
76.
Azo dyes are among the oldest man-made chemicals and they are still widely used in the textile, printing and the food industries.About 10% - 15% of the total dyes used in the industry is released into the environment during the manufacturing and usage. Some dyes and some of their N-substituted aromatic bio-transformation products are toxic and/or carcinogenic and therefore these dyes are considered to beenvironmental pollutants and health hazards. These azo dyes are degraded by physico-chemical and biological methods. Of these, biological methods are considered to be the most economical and efficient. In this work, attempts were made to degrade these dyes aerobically. Theorganisms which were efficient in degrading the following azo dyes-Red RB, Remazol Red, Remazol Blue, Remazol Violet, Remazol Yellow,Golden Yellow, Remazol Orange, Remazol Black- were isolated from three different sources viz., wastewater treatment plant, paper milleffluent treatment plant and tannery was tewater treatment plant. The efficiency of azo dye degradation by mixed cultures from each source wasanalyzed. It was found that mixed cultures from tannery treatment plant worked efficiently in decolorizing Remazol Red, Remazol Orange,Remazol Blue and Remazol Violet, while mixed cultures from the paper mill effluent worked efficiently in decolorizing Red RB, Golden Yellow and Remazol Yellow. The mixed cultures from wastewater treatment plant efficiently decolorized Remazol Black.  相似文献   
77.
78.
79.
The hydrology and the pattern of sediment and nutrient loss through water that may occur under ‘slash and burn’ agriculture (jhum) at the time of cropping, as well as during the subsequent fallow development, was studied at higher elevations of Meghalaya, north-eastern India and compared with terrace cultivation. A comparison of an agro-ecosystem under a 10-year jhum cycle with that under a 5-year cycle suggests that the loss of sediment, water and nutrients such as nitrogen and phosphorus is greater under the latter, though cationic losses show a reverse trend. All losses were markedly reduced during fallow development during secondary succession. Terrace cultivation resulted in a general reduction of water and nutrient loss. However, these losses increased during the second year of terrace cultivation.While jhum cannot be sustained with the shorter cycle introduced in recent times, terracing does not seem to offer an alternative.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号