首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   0篇
废物处理   23篇
环保管理   5篇
综合类   11篇
基础理论   10篇
环境理论   1篇
污染及防治   27篇
评价与监测   13篇
社会与环境   5篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   13篇
  2012年   3篇
  2011年   3篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   9篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1985年   1篇
  1974年   1篇
  1966年   2篇
  1965年   3篇
  1964年   1篇
排序方式: 共有95条查询结果,搜索用时 546 毫秒
61.
Pesticide-humic interactions are known to have environmental significance in modifying the toxicity and mobility of agricultural chemicals. to test this, interaction between gamma-hexachlorocyclohexane (gamma-HCH) released from the sand coated with gamma-HCH and humic acid was investigated using thin layer chromatography and spectral studies such as UV (ultraviolet), IR (infrared), mass and FAB (fast atom bombardment) mass spectrometry. These studies revealed the evidence of loose interchelation between gamma-HCH and humic acid. the significance of the results in relation to detoxification of gamma-HCH in aquatic ecosystems are discussed.  相似文献   
62.
Injection molded nanocomposites have been successfully fabricated from cellulose acetate (CA), eco-friendly triethyl citrate (TEC) plasticizer, and organically modified clay with and without maleic anhydride grafted cellulose acetate butyrate (CAB-g-MA) as a compatibilizer. The effects of processing conditions such as mixing methods, pre-plasticizing times, extruder retention times (RT) and addition of compatibilizer on the performance of these nanocomposites have been evaluated. The cellulosic plastic with CA/TEC (80/20 wt%) was used as the polymer matrix for nanocomposite fabrication. The morphologies of these nanocomposites were evaluated through X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. The mechanical properties of the nanocomposites were measured and have been correlated with the XRD and TEM observations. From all of the sequential mixing methods used, powder–powder mixing leads to the most transparent nanocomposites. Cellulosic plastic-based nanocomposites obtained using increased pre-plasticizing times and RT showed better exfoliated structures. In the system containing compatibilizer, the minimum retention time required for obtaining almost completely exfoliated hybrid nanocomposites was shorter than in the system without compatibilizer.  相似文献   
63.
Sustainability, industrial ecology, eco-efficiency, and green chemistry are guiding the development of the next generation of materials, products, and processes. Biodegradable plastics and bio-based polymer products based on annually renewable agricultural and biomass feedstock can form the basis for a portfolio of sustainable, eco-efficient products that can compete and capture markets currently dominated by products based exclusively on petroleum feedstock. Natural/Biofiber composites (Bio-Composites) are emerging as a viable alternative to glass fiber reinforced composites especially in automotive and building product applications. The combination of biofibers such as kenaf, hemp, flax, jute, henequen, pineapple leaf fiber, and sisal with polymer matrices from both nonrenewable and renewable resources to produce composite materials that are competitive with synthetic composites requires special attention, i.e., biofiber–matrix interface and novel processing. Natural fiber–reinforced polypropylene composites have attained commercial attraction in automotive industries. Natural fiber—polypropylene or natural fiber—polyester composites are not sufficiently eco-friendly because of the petroleum-based source and the nonbiodegradable nature of the polymer matrix. Using natural fibers with polymers based on renewable resources will allow many environmental issues to be solved. By embedding biofibers with renewable resource–based biopolymers such as cellulosic plastics; polylactides; starch plastics; polyhydroxyalkanoates (bacterial polyesters); and soy-based plastics, the so-called green bio-composites are continuously being developed.  相似文献   
64.
The paper deals with 45 species of 21 genera of fresh water blue green algae (BGA) from three different agro-climatic zones of Uttar Pradesh. Samples were collected from different habitats varying in physico-chemical properties. Out of 45 species, 13 species belonged to order Chroococcales, 31 to order Nostocales, while only 1 species belonged to order Stigonimatales i.e. Fischerella mucicola. The physico-chemical parameters like pH, temperature, dissolved oxygen, electrical conductivity, nitrate, nitrite and rainfall play an important role in the periodicity of BGA. A positive correlation was found between dissolved oxygen (DO) of different ponds and species diversity, except in the case of western region of Uttar Pradesh (Farukhabad and Mahoba districts) where a positive correlation was found in electrical conductivity and total dissolved solids.  相似文献   
65.
增加粮食需求,减少对无机氮的依赖性   总被引:1,自引:0,他引:1  
较高的作物产量通常需要较高的养分使用率,因此就使无机氮的使用增加.到2030年,估计粮食的年需求量约为28亿t,相应的无机氮消耗量为9600万t(在1995~1997年间,无机氮的年消耗量为7800万t).从全球范围来讲,由于使用无机肥料而流失到周围环境中去的无机氮目前为每年3600万t,价值117亿美元,它们对环境保护起反作用.但是,新型的提高肥料使用效率(FUE)技术可以增加产量但不使无机氯的使用成比例增加.并且,含氮养分的供应可以通过改进农业生产系统和开发如生物固氮(BNF)等可替代资源而扩大.到2030年,随着出台适当的政策、实施技术转让、对研究和投资提供支持以及在农田采用化肥使用效率(FUE)和生物固氮(BNF)技术等,可以使无机氯每年节省1000万t,价值33亿美元.  相似文献   
66.
This paper describes the development and testing of the Acid Deposition and Oxidant Model (ADOM), a nine-year project funded by a consortium consisting of Environment Ontario, Environment Canada, the German Umweltbundesamt, and the Electric Power Research Institute. The project consisted of three major phases: a design phase, an implementation phase, and an evaluation phase. In the design phase, the system being modeled was divided into its components-transport, gas phase chemistry, aqueous phase chemistry, dry deposition and cloud processes. The formulation of the modules for each of these processes was guided by the requirement that the modules reflect the state of the art, and at the same time be consistent with the available numerical resources. In the implementation phase, submodels were constructed, and then subjected to several tests, which included mathematical consistency checks, sensitivity studies, and evaluation against field and laboratory data. The modules were then assembled and interfaced with the input data sets. The codes for the modules as well as the overall model were vectorized to take advantage of the capabilities of supercomputers such as the CRAY. The North American and West German versions of the model are being tested against data collected in North America and in Europe. This paper describes the evaluation of ADOM with data associated with a regional ozone episode in Ontario in June 1983, and measurements made during an experiment to study the scavenging characteristics of spring storms in the central and northeastern United States in April 1981.  相似文献   
67.
Clever solid waste bin is important to create a well-organized and dynamic waste management system. This paper presents the novel way of carrying out an integrated sensing system which automates the solid waste management process. The proposed smart waste bin is based on ultrasonic-level sensor and various gas sensors which automatically sense the hazardous gases and the maximum limit of waste. The approach is unique and uses cloud and mobile app-based monitoring. Two important features of work are it not only checks the maximum waste level of the bin but also checks various stinky gases. The other part of the work is conveying the information to the responsible authority. This unique approach takes the assistance of cloud sever because of its advantages in field of usability, accessibility and disaster recovery. The information can be linked with municipality web server for immediate action. The waste bins are tracked by a unique number which represents its location. The eccentric technique gives all information related to physical condition of a particular bin and can easily reach the corresponding authority. The whole information is interconnected with a cloud-based web-information system at the host server.  相似文献   
68.
Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) are representative heme enzymes meant for metabolizing stress-provoked reactive oxygen species (ROS; such as H2O2) and controlling their potential impacts on cellular metabolism and functions. CAT mainly occurs in peroxisomes and catalyzes the dismutation reaction without requiring any reductant; whereas, APX has a higher affinity for H2O2 and utilizes ascorbate (AsA) as specific electron donor for the reduction of H2O2 into H2O in organelles including chloroplasts, cytosol, mitochondria, and peroxisomes. Literature is extensive on the glutathione-associated H2O2-metabolizing systems in plants. However, discussion is meager or scattered in the literature available on the biochemical and genomic characterization as well as techniques for the assays of CAT and APX and their modulation in plants under abiotic stresses. This paper aims (a) to introduce oxidative stress-causative factors and highlights their relationship with abiotic stresses in plants; (b) to overview structure, occurrence, and significance of CAT and APX in plants; (c) to summarize the principles of current technologies used to assay CAT and APX in plants; (d) to appraise available literature on the modulation of CAT and APX in plants under major abiotic stresses; and finally, (e) to consider a brief cross-talk on the CAT and APX, and this also highlights the aspects unexplored so far.  相似文献   
69.
This study investigates the processability and biodegradability of composite bioplastic materials. Biocomposites were processed using twin-screw compounding of the bioplastic poly(butylene succinate) (PBS) with bio-based fillers derived from co-products of biofuel production. An extensive biodegradability evaluation was conducted on each biocomposite material, as well as the base materials, using respirometric testing to analyze the conversion of organic carbon into carbon dioxide. This evaluation revealed that the presence of meal-based fillers in the biocomposites increased the rate of biodegradation of the matrix polymer, degrading at a faster pace than both the pure PBS polymer and the switchgrass (SG) composite. This degradation was further confirmed using FT-IR and thermal analysis of the material structure before and after biodegradation. The increased biodegradation rate is attributed to the high concentration of proteins in the meal-based composites, which enhanced the hydrolytic biodegradation of the material and facilitated micro-organism growth. The SG-based composite degraded slower than the pure polymer due to its lignin content, which degrades via a different mechanism than the polymer, and slowed the biodegradation process.  相似文献   
70.
We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68–1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34–0.5 μm) compared to that (0.28–0.37) at long-wavelength (LW) channels (0.87–1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68–0.82 and 1.14–1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23–3 μm) which was 60–70 % of aerosol 10- μm (size 0.23–10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in relative distribution of fine and coarse mode of MODIS AOD was also inferred.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号