首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18181篇
  免费   144篇
  国内免费   80篇
安全科学   434篇
废物处理   710篇
环保管理   2027篇
综合类   5497篇
基础理论   3720篇
环境理论   2篇
污染及防治   4348篇
评价与监测   929篇
社会与环境   670篇
灾害及防治   68篇
  2022年   199篇
  2021年   171篇
  2018年   230篇
  2017年   223篇
  2016年   326篇
  2015年   242篇
  2014年   357篇
  2013年   1207篇
  2012年   402篇
  2011年   547篇
  2010年   508篇
  2009年   589篇
  2008年   593篇
  2007年   618篇
  2006年   545篇
  2005年   486篇
  2004年   516篇
  2003年   466篇
  2002年   458篇
  2001年   621篇
  2000年   420篇
  1999年   294篇
  1998年   207篇
  1997年   199篇
  1996年   200篇
  1995年   235篇
  1994年   245篇
  1993年   211篇
  1992年   224篇
  1991年   237篇
  1990年   256篇
  1989年   229篇
  1988年   181篇
  1987年   182篇
  1986年   181篇
  1985年   180篇
  1984年   201篇
  1983年   190篇
  1982年   198篇
  1981年   208篇
  1980年   169篇
  1979年   181篇
  1978年   147篇
  1974年   147篇
  1973年   146篇
  1968年   157篇
  1967年   184篇
  1966年   155篇
  1965年   148篇
  1964年   151篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Valdés H  Zaror CA 《Chemosphere》2006,65(7):1131-1136
Ozone oxidation combined with activated carbon adsorption (O(3)/AC) has recently started to be developed as a single process for water and wastewater treatment. While a number of aspects of aqueous ozone decomposition are well understood, the importance and relationship between aqueous ozone decomposition and organic contaminant degradation in the presence of activated carbon is still not clear. This study focuses on determining the contribution of homogeneous and heterogeneous reactions to organic contaminants removal in O(3)/AC system. Benzothiazole (BT) was selected as a target organic pollutant due to its environmental concern. A reactor system based on a differential circular flow reactor composed by a 19 cm(3) activated carbon fixed bed column and 1 dm(3) storage tank was used. Ozone was produced from pure and dry oxygen using an Ozocav ozone generator rated at 5 g O(3)h(-1). Experimental results show that BT removal rate was proportional to activated carbon dosage. Activated carbon surface contribution to BT oxidation reactions with ozone, increased with pH in absence of radical scavengers. The radical reaction contribution within the pH range 2-11 accounted for 67-83% for BT removal in O(3)/AC simultaneous treatment. Results suggest that at pH higher than the pH of the point of zero charge of the activated carbon dissociated acid groups such as carboxylic acid anhydrides and carboxylic acids present on activated carbon surface could be responsible for the observed increase in the ozone decomposition reaction rate. A simplified mechanism and a kinetic scheme representing the contribution of homogeneous and heterogeneous reactions on BT ozonation in the presence of activated carbon is proposed.  相似文献   
992.
Heise J  Höltge S  Schrader S  Kreuzig R 《Chemosphere》2006,65(11):2352-2357
For sulfonamides, the formation of non-extractable residues has been identified by laboratory testing as the most relevant concentration determining process in manured soil. Therefore, the present study has been focused on the chemical and biological characterization of non-extractable residues of 14C-labeled sulfadiazine or sulfamethoxazole. In laboratory batch experiments, the test substances were spiked via standard solution or test slurry to microbially active soil samples. After incubation periods of up to 102 d, a sequential extraction technique was applied. Despite the exhaustive extraction procedure, sulfadiazine residues mainly remained non-extractable, indicating the high affinity to the soil matrix. The remobilization of non-extractable 14C-sulfadiazine residues was monitored in the activated sludge test and the Brassica rapa test. Only small amounts (<3%) were transferred into the extractable fractions and 0.1% was taken up by the plants. In the Lumbricus terrestris test A, the release of non-extractable 14C-sulfamethoxazole residues by the burrowing activity of the earthworms was investigated. The residues mainly remained non-extractable (96%). The L. terrestris test B was designed to study the immobilization of 14C-sulfamethoxazole in soil directly after the test slurry application. The mean uptake by earthworms was 1%. Extractable and non-extractable residues amounted to 5% and 93%, respectively. Consequently, the results of all tests confirmed the high affinity of the non-extractable sulfonamide residues to the soil matrix.  相似文献   
993.
Luan TG  Yu KS  Zhong Y  Zhou HW  Lan CY  Tam NF 《Chemosphere》2006,65(11):2289-2296
The PAH metabolites produced during degradation of fluorene, phenanthrene and pyrene by a bacterial consortium enriched from mangrove sediments were analyzed using the on-fiber silylation solid-phase microextraction (SPME) combining with gas chromatography–mass spectrometry (GC–MS) method. Seventeen metabolites at trace levels were identified in different PAH degradation cultures based on the full scan mass spectra. In fluorene degradation cultures, 1-, 2-, 3- and 9-hydroxyfluorene, fluorenone, and phthalic acid were detected. In phenanthrene and pyrene degradation cultures, various common metabolites such as phenanthrene and pyrene dihydrodiols, mono-hydroxy phenanthrene, dihydroxy pyrene, lactone and 4-hydroxyphenanthrene, methyl ester, and phthalic acid were found. The detection of various common and novel metabolites demonstrates that SPME combining with GC–MS is a quick and convenient method for identification as well as monitoring the real time changes of metabolite concentrations throughout the degradation processes. The knowledge of PAH metabolic pathways and kinetics within indigenous bacterial consortium enriched from mangrove sediments contributes to enhance the bioremediation efficiency of PAH in real environment.  相似文献   
994.
HCHs and DDTs in sediment-dwelling animals from the Yangtze Estuary, China   总被引:3,自引:0,他引:3  
Yang Y  Liu M  Xu S  Hou L  Ou D  Liu H  Cheng S  Hofmann T 《Chemosphere》2006,62(3):381-389
HCHs and DDTs in sediment-dwelling animals including mollusks and crabs from the Yangtze Estuary were determined by GC-ECD. Levels of t-HCH were in the range of 1.2-5.5 ng g(-1) and averaged 3.5 ng g(-1) in mollusks, while t-DDT concentrations ranged from 26.0 to 68.8 ng g(-1), with a mean of 34.5 ng g(-1). In crabs t-HCH concentrations varied from 2.0 to 25.7 ng g(-1) and averaged 13.8 ng g(-1), whereas the concentrations of t-DDT were in the range of 1.5-24.8 ng g(-1) with a mean value of 5.9 ng g(-1). The HCHs and DDTs levels depend on geographical position and sources, showing the high levels at fresh water area in the estuary, such as XP, CM and LHK sites, and lower at brackish water area, such as FX site, and little difference between species. Results also indicate there was no significant relationship between t-HCH (t-DDT) concentrations and lipid contents both in mollusks and crabs because of non-equilibrium state under a specific estuarine dynamics; smaller individuals accumulated more HCHs and DDTs than larger individuals of mollusks at LHK site, showing different uptake rate for these pesticides; moreover, HCHs and DDTs levels were lower in female crab bodies than male crab bodies suggesting that the release of spawning. BSAFs (Biota- Sediment Accumulation Factors) from sediment-dwelling animals for HCHs and DDTs show a significant "one high with two low" and "one low with two high" effect in the Yangtze Estuary.  相似文献   
995.
High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.  相似文献   
996.
The enantiomeric ratios (ER) of alpha-HCH and o,p'-DDT ((+)-isomer concentration/(-)-isomer concentration) and o,p'-DDD (first eluting enantiomer/second enantiomer) were investigated in 112 human placentas from Finnish boys collected 1997-2001. Both o,p'-DDD and alpha-HCH showed changes in their ER depending on the total concentration of the compound in the sample. Their ERs are approaching a value close to racemic mixture (ER=1) at high concentrations. At low concentrations they often differ from 1. The relationship between concentration and ER is clearly identified and it has been shown that it is not affected by analytical uncertainty. This relationship appears to be important for assessing tissue- and species-specific exposure and risk and it may indicate whether net uptake or metabolic activity is dominant in exposure for the resulting exposure of the enantiomers.  相似文献   
997.
Best EP  Geter KN  Tatem HE  Lane BK 《Chemosphere》2006,62(4):616-625
The objectives of this study were to provide data that can be used to predict exposure-based effects of RDX in aged soil on multiple endpoint organisms representing two trophic levels. These data can be used for defining criteria or reference values for environmental management and conducting specific risk assessment. Dose-response experiments formed the basis for the evaluation of toxic effects and transfer of contaminants from soil into two trophic levels. Long-term exposure tests were conducted to evaluate chronic, sublethal, toxicity and transfer of aged soil-based explosives, with RDX as main contaminant. In these tests, plants were exposed for 55 days in the greenhouse, biomass was determined and residues of explosives parent compounds and RDX metabolites were analyzed using HPLC techniques. Worms were exposed for 28 days (Eisenia fetida) and 42 days (Enchytraeus crypticus) in the laboratory, biomass and number were determined, and tissues were analyzed for explosives compounds. The plants tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of Lolium perenne was not significantly related to soil-RDX concentration, while biomass of Medicago sativa significantly increased. No screening benchmark for RDX in soil for plants was calculated, since concentrations up to 1,540 mg kg(-1) soil failed to reduce biomass by 20% as required for a LOEC. RDX, RDX-metabolite MNX, and accompanying HMX concentrations in plants were significantly related to concentrations in soil after 55 days of exposure (RDX: R(2) = 0.77-0.89; MNX R(2) = 0.53-0.77; HMX: R(2) = 0.67-0.71). The average bioconcentration factors (BCF) were for RDX 17 in L. perenne and 37 in M. sativa, and for HMX 2 in L. perenne and 44 in M. sativa. The worms also tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of E. fetida adults decreased with soil-RDX concentration, and a LOEC of 1,253 mg kg(-1) soil-DW was estimated. RDX concentrations in E. fetida were significantly related to concentrations in soil after 28-day exposure (R(2) = 0.88). The average BCF in E. fetida for RDX was 1. Because in response to exposure to RDX-contaminated soil the RDX concentrations in plants increased initially and decreased subsequently, while those in worms increased continuously, RDX in worm tissues may accumulate to higher concentrations than in plant tissues, regardless of the low average BCF for worms.  相似文献   
998.
The risks to Indo-Pacific Humpback Dolphins and Finless Porpoises associated with polychlorinated biphenyls (PCBs) were assessed. Stomach contents from twelve stranded Humpback Dolphins and sixteen stranded Finless Porpoises were collected. Concentrations of total and isomer-specific PCBs in the stomach contents were determined using dual-column gas chromatography equipped with electron capture detectors (GC-ECD). Risks due to the PCBs were assessed in three scenarios, based on total PCBs (summation of 41 PCB congeners), total toxicity equivalency (TEQs) and PCB 118, using the toxicity reference values (TRVs) as the threshold effects benchmarks. The calculated risk quotients (RQs) showed that risks due to PCBs were generally low or negligible. Specifically, RQs from total TEQs and total PCBs for Finless Porpoises are below one, suggesting that PCBs should be a low risk for the Finless Porpoise in Hong Kong waters. However, the Humpback Dolphin has RQs larger than 1 for total TEQs and total PCBs when the 95th percentile data were used in the evaluation. This indicates that further investigation may be needed to examine more closely the potential impact of toxic contaminants in the habitat of the Humpback Dolphin.  相似文献   
999.
Polycyclic aromatic hydrocarbon (PAH) concentrations were measured in Spartina alterniflora plants grown in pots of contaminated sediment, plants grown in native sediment at a marsh contaminated with up to 900 microg/g total PAHs, and from plants grown in uncontaminated control sediment. The roots and leaves of the plants were separated, cleaned, and analyzed for PAHs. PAH compounds were detected at up to 43 microg/g dry weight in the root tissue of plants grown in pots of contaminated soil. PAH compounds were detected at up to 0.2 microg/g in the leaves of plants grown in pots of contaminated soil. Concentrations less than 0.004 microg/g were detected in the leaves of plants grown at a reference site. Root concentration factor (RCF) values ranged from 0.009 to 0.97 in the potted plants, and from 0.004 to 0.31 at the contaminated marsh site. Stem concentration factor (SCF) values ranged from 0.00004 to 0.03 in the potted plants and 0.0002 to 0.04 at the contaminated marsh. No correlation was found between the RCF value and PAH compound or chemical properties such as logKOW. SCF values were higher for the lighter PAHs in the potted plants, but not in the plants collected from the contaminated marsh. PAH concentrations in the roots of the potted plants are strongly correlated with soil concentrations, but there is less correlation for the roots grown in natural sediments. Additional plants were grown directly in PAH-contaminated water and analyzed for alkylated PAH homologs. No difference was found in leaf PAH concentrations between plants grown in contaminated water and control plants.  相似文献   
1000.
An abandoned pentachlorophenol plant and nearby area in southern Taiwan was heavily contaminated by dioxins, impurities formed in the PCP production process. The investigation showed that the average serum PCDD/Fs of residents living nearby area (62.5 pg WHO-TEQ/g lipid) was higher than those living in the non-polluted area (22.5 and 18.2 pg WHO-TEQ/g lipid) (P<0.05). In biota samples, average PCDD/F of milkfish in sea reservoir (28.3 pg WHO-TEQ/g) was higher than those in the nearby fish farm (0.15 pg WHO-TEQ/g), and Tilapia and shrimp showed the similar trend. The average daily PCDD/Fs intake of 38% participants was higher than 4 pg WHO-TEQ/kg/day suggested by the world health organization. Serum PCDD/F was positively associated with average daily intake (ADI) after adjustment for age, sex, BMI, and smoking status. In addition, a prospective cohort study is suggested to determine the long-term health effects on the people living near factory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号