首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   2篇
废物处理   4篇
环保管理   8篇
综合类   12篇
基础理论   26篇
污染及防治   49篇
评价与监测   10篇
社会与环境   3篇
灾害及防治   1篇
  2023年   4篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   9篇
  2012年   3篇
  2011年   10篇
  2010年   7篇
  2009年   6篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1995年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1979年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
101.
Ozone (O3) has become one of the most toxic air pollutants to plants worldwide. However, investigations on O3 impacts on crops health and productivity in South America countries are still scarce. The present study analyzed the differences on the enzymatic and non-enzymatic antioxidant system in foliar tissue of two subtropical Phaseolus vulgaris varieties exposed to high O3 concentration. Both varieties were negatively impacted by the pollutant, but the responses between each variety were quite distinct. Results revealed that Irai has higher constitutive levels of reactive oxygen species (ROS) and ascorbate (AsA) concentration, but lower total thiol levels and catalase immunocontent. In this variety catalase protein concentration was increased after O3 exposure, indicating a better cellular capacity to reduce hydrogen peroxide. On the opposite, Fepagro 26-exposed plants increased ROS generation and AsA concentration, but had the levels of total thiol content and catalase protein unchanged. Furthermore, O3 treatment reduced the levels of chlorophylls a and b, and the relationship analysis between the chlorophyll ratio (a/b) and protein concentration were positively correlated indicating that photosynthetic apparatus is compromised, and thus probably is the biomass acquisition on Fepagro 26. Differently, O3 treatment of Irai did not affect chlorophylls a and b content, and loss on the protein content was lower. Altogether, these data suggest that early accumulation of ROS on Fepagro 26 are associated with an insufficient leaf antioxidant capacity, which leads to cell structure disruption and impairs the photosynthesis. Irai seems to be more tolerant to O3 toxic effects than Fepagro 26, and the observed differences on O3 sensitivity between the two varieties are apparently based on constitutive differences involved in the maintenance of intracellular redox homeostasis.  相似文献   
102.
This research investigated whether environmental conditions, biological fish characteristics and anthropogenic impacts influenced mercury (Hg) assimilation into the muscle tissue of two fish species from two Brazilian bays, Ilha Grande Bay and Guanabara Bay. Fish and superficial water were collected in different periods. Hg was determined by CV-AAS. Methylmercury (MeHg) was identified and quantified by ECD-GC. Chlorophyll a concentrations in the water column indicated that Ilha Grande Bay and Guanabara Bay were oligotrophic and eutrophic, respectively. Hg in fish ranged from 2.10 to 870.17 μg kg?1 dry wt. in Ilha Grande Bay and 40.90 to 809.24 μg kg?1 dry wt. in Guanabara Bay. Slight differences were found between the length-normalized Hg concentrations and its percent of Hg in a voracious predator from the bays. In Guanabara Bay, where the presence of a chlor-alkali plant causes Hg input, the iliophagous fish species showed the highest length-normalized Hg concentrations and the voracious predator the lowest. Iliophagous fish is consumed by voracious predator and, consequently, acts as their MeHg food supply. Iliophagous fish from Ilha Grande Bay presented a higher percent of MeHg (80.0 %) than specimens from Guanabara Bay (54.5 %). This fact suggests that more MeHg was transferred from iliophagous fish to voracious predator in Ilha Grande Bay. At Guanabara Bay, the bioproduction is greater than that at Ilha Grande Bay, presenting the highest biomass in it ecosystem, which may subsequently dilute Hg and reduce its availability to the biota; i.e., influencing in Hg and MeHg availability throughout the food chain. Consequently, more MeHg is available in the aquatic environment of Ilha Grande Bay.  相似文献   
103.
The occurrence of diseases in cultivars has caused significant losses in global food production. The advancement of nanobiotechnology makes it possible to obtain new products to be used in the control of pathogens in cultivars. Silver nanoparticles can be synthesized by microalgae and are widely known for their antimicrobial activity. In addition, the biomass produced in microalgal culture for the biosynthesis of the nanoparticles also demonstrates antimicrobial properties, as it can increase the antibacterial and antifungal potential of the silver nanoparticles. In this context, this article addresses the use of microalgae to biosynthesize silver nanoparticles simultaneously with biomass production. In addition, we demonstrate the antimicrobial potential of these nanomaterials, as well as of the microalgal biomass produced in biosynthesis, to use in the control of pathogens in agriculture.  相似文献   
104.
Hydrodynamic cavitation (HC)-based treatments have been proposed for the degradation of phenol as a toxic pollutant. The present work aimed to optimize the degradation of phenol using HC by means of Doehlert experimental design, which has not been previously addressed. Initially, operational parameters of hydraulic characteristics of the pump, inlet pressure, solution pH, and initial concentration were optimized; later, the effects of pH solution and H2O2 loading or initial pollutant concentration on phenol degradation were explored using the Doehlert experimental design. It was observed that phenol degradation is strongly dependent on the pH of the solution. Also, the acidic condition favors the formation of hydroxyl radicals and thus, the degradation of phenol. Based on the Doehlert matrix, the 94.1% phenol degradation and 68.60% total organic carbon (TOC) were obtained in 180 min at 304.5 mg/L of hydrogen peroxide at an initial concentration of 20 mg/L, 2.0 pH, and 90 psi inlet pressure, providing a cavitational yield of 6.33 × 10−6 mg/J and minimum treatment cost of US$/L 0.13. Overall, it has been observed that HC can be a promising route for the removal of pollutants (phenol) effectively using hydrogen peroxide as an additive.  相似文献   
105.
Waste from the beneficiation of fish was composted with crushed grass aiming to characterize their chemical composition and investigate the possibility of the use of the final compost as source of humic acids (HA) able to stimulate the growth of lettuce. Compost presented pH value, C/N ratio, and electrical conductivity that allow its use as an organic fertilizer. The element content was present in the following order of abundance in the compost: P?>?Ca?>?N?>?Mg?>?K?>?Fe?>?Zn?>?Mn?>?Mo?>?Cu, and the humus composition was similar to that observed in others kind of organic residues composted. The high content of oxygen pointed out a high level of oxidation of HA, in line with the predominance of phenolic acidity in the functional groups. The 13C-NMR spectra showed marked resonances due to the presence of lipids and other materials resistant to degradation as methoxy substituent and N-alkyl groups. A concentration of 20 mg L?1 HA increased significantly both dry and wet root matter in lettuce but the CO2 assimilation, stomatal conductance, and number of lateral roots of the plants were not affected. However, increases of 64% in the water-use efficiency was observed due to the HA addition, probably related to the root morphology alteration which resulted in 1.6-fold increase of lateral root average length and due to the higher H+ extrusion activity. Reuse of residues from the fish beneficiation activity by composting may represent a safe tool to increase the value of recycled organic residues and generate HA with potential use as plant growth stimulants.  相似文献   
106.
Storage of cattle slurry leads to emissions of methane (CH(4)), nitrous oxide (N(2)O), ammonia (NH(3)), and carbon dioxide (CO(2)). On dairy farms, winter is the most critical period in terms of slurry storage due to cattle housing and slurry field application prohibition. Slurry treatment by separation results in reduced slurry dry matter content and has considerable potential to reduce gaseous emissions. Therefore, the efficiency of slurry separation in reducing gaseous emissions during winter storage was investigated in a laboratory study. Four slurry fractions were obtained: a solid and a liquid fraction by screw press separation (SPS) and a supernatant and a sediment fraction by chemically enhanced settling of the liquid fraction. Untreated slurry and the separated fractions were stored in plastic barrels for 48 d under winter conditions, and gaseous emissions were measured. Screw press separation resulted in an increase of CO(2) (650%) and N(2)O (1240%) emissions due to high releases observed from the solid fraction, but this increase was tempered by using the combined separation process (CSP). The CSP resulted in a reduction of CH(4) emissions ( approximately 50%), even though high emissions of CH(4) (46% of soluble C) were observed from the solid fraction during the first 6 d of storage. Screw press separation increased NH(3) emissions by 35%, but this was reduced to 15% using the CSP. During winter storage greenhouse gas emissions from all treatments were mainly in the form of CH(4) and were reduced by 30 and 40% using SPS and CSP, respectively.  相似文献   
107.
With the aim of using Mytilus galloprovincialis acetylcholinesterase (AChE) and glutathione S-transferases (GST) activities as biomarkers of environmental contamination in risk assessment studies along the northwest Portuguese coast, the objective of this study was to provide background information related to: (1) baseline values of these enzymatic activities both in reference and contaminated areas and their responsiveness as indicators of exposure to environmental contaminants; (2) the importance of seasonal variations of such biomarkers in M. galloprovincialis along this area. For this, the activity of these enzymes was seasonally determined in mussels collected from four sites, including a reference and three stations with different contamination sources along the referred area. Statistically significant differences on both enzymatic activities were found among the four sampling stations, at the four sampling periods. In comparison to the reference station, lower AChE and higher GST activity values were found in mussels collected in stations potentially contaminated by pesticides and domestic/industrial effluents and in mussels collected in the vicinity of an oil refinery and an industrial/mercantile harbour, respectively. The results obtained in this work highlighted the potential suitability of these biomarkers to be used as components of environmental monitoring programs in risk assessment studies along the northwest Portuguese coast. Since a seasonal variation in both enzymatic activities was found, the possible implications of such variability in the use of these enzymes as environmental biomarkers are also discussed.  相似文献   
108.
Inasmuch as health is at cross purposes with illness, suffering, disability and death, it is clear that all measures that are adopted with foresight to reduce the repercussions of natural disasters have consequences for health  相似文献   
109.
European consumption of wood-based panels reached record levels in recent years driven mostly by demand from end-use sectors: residential construction, furniture, cabinets, flooring and mouldings. The main panel types are composite boards such as particleboard, high density fiberboard (HDF), medium-density fiberboard (MDF) and other adhesively bonded composites such as plywood and wet-process fiberboard (hardboard). The synthetic resins used in their manufacture come from non-renewable resources, such as oil and gas. Several consequences are associated to this type of adhesives: variation in the availability and cost of these wood adhesives depends on raw materials, the formaldehyde emissions as well as the limited recyclability of the final product. Hence, in the search for alternatives to petroleum-based wood adhesives, efforts are being devoted to develop adhesives by using phenolic substitutes based on lignin, tannin or starch. In this context, the forest industry is increasingly approaching to enzyme technology in the search of solutions. The main goal of this study was to assess the environmental impacts during the life cycle of a new process for the manufacture of hardboards manufacture, considering the use of a two-component bio-adhesive formulated with a wood-based phenolic material and a phenol-oxidizing enzyme. This new product was compared to the one manufactured with the conventional phenol-formaldehyde resin. The study covers the life cycle of green hardboards production from a cradle-to-gate perspective, analysing in detail the hardboard plant and dividing the process chain in three subsystems: Fibers Preparation, Board Forming and Board Finishing.Auxiliary activities such as chemicals, bio-adhesive, wood chips, thermal energy and electricity production and transport were included within the system boundaries.Global warming (GW), photochemical oxidant formation (PO), acidification (AC) and eutrophication (EP) were the impact categories analysed in this study. Additionally, the cumulative energy demand was evaluated as another impact category. According to the results, four stages significantly influenced the environmental burdens of the production system: laccase production, on-site thermal energy and electricity production as well as wood chipping stage. Due to the environmental impact associated to the production of green bonding agents, a sensitivity analysis with special focus on the eutrophying emissions was carried out by evaluating the amount of laccase and lignin based phenolic material used. The combined reduction in both bonding agents may slightly reduce the contributions to this impact category. In addition, a hypothetical scenario with no laccase and with a higher concentration of the lignin based material (25% more) could improve the environmental profile in all impact categories with a reduction of 1.5% in EP.Further research should focus mainly on laccase production, in order to reduce its energy demand as well as on the amount of green adhesive required to obtain mechanical and swelling properties similar to those of conventional hardboard.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号