首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   0篇
  国内免费   35篇
安全科学   55篇
废物处理   46篇
环保管理   54篇
综合类   62篇
基础理论   85篇
环境理论   1篇
污染及防治   297篇
评价与监测   89篇
社会与环境   35篇
灾害及防治   4篇
  2023年   22篇
  2022年   78篇
  2021年   73篇
  2020年   15篇
  2019年   25篇
  2018年   16篇
  2017年   31篇
  2016年   25篇
  2015年   12篇
  2014年   18篇
  2013年   67篇
  2012年   33篇
  2011年   42篇
  2010年   27篇
  2009年   25篇
  2008年   20篇
  2007年   28篇
  2006年   13篇
  2005年   12篇
  2004年   10篇
  2003年   15篇
  2002年   16篇
  2001年   15篇
  2000年   9篇
  1999年   8篇
  1998年   3篇
  1997年   7篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
排序方式: 共有728条查询结果,搜索用时 31 毫秒
551.
Selected trace metals were estimated by atomic absorption spectrometry in the water and soil samples collected from the remote region of Himalaya. The soil samples were analysed for soluble and acid extractable fraction of trace metals. In water samples, Ca, Na, Mg and K emerged as dominant contributors, whereas, Ca, Na, K, Mg, Fe and Pb were estimated at comparatively higher levels in the water extract of the soil. In case of acid extract of the soil samples, Ca, K, Fe, Mg, Mn and Na were found at elevated concentrations. Based on mean levels of the metals, following decreasing concentration order was observed in water samples: Ca > Na > Mg > K > Pb > Co > Cu > Zn > Mn > Cr > Fe > Cd > Li, however, in the acid extract of the soil, following order was noted: Ca > K > Fe > Mg > Mn > Na > Pb > Zn > Cr > Li > Cu > Co > Cd. The correlation study revealed appreciably diverse mutual relationships of trace metals in the water and soil samples. The multivariate cluster analyses exhibited divergent apportionment of trace metals in water and soil samples. Among the trace metals, Cd, Pb, Li, Zn, Cr, Cu, Mn and Co exhibited extreme to significant anthropogenic enrichment in the soil samples, while the rest of the metals were mostly contributed by the natural processes.  相似文献   
552.
The present study focuses on the abundance, heavy metal content, and the impact of ecosystem engineering activities of two coal mine site-inhabiting ant species, Cataglyphis longipedem and Camponotus compressus. The abundance of Ct. longipedem increased while that of C. compressus decreased, with increasing soil pollution. Correspondence analysis reveals a close association between soil heavy metal concentrations and Ct. longipedem abundance, but this association is lacking in the case of C. compressus. Cataglyphis ants which occupy stress-characterized niches appear to be pre-adapted to tolerate heavy metal pollution. Higher concentrations of Zn and Mn in Ct. longipedem may contribute to the strengthening of the cuticular structures, necessary for nest excavation in the hard, arid soil and for single load carrying. C. compressus ants appear to be pollution sensitive. Their higher Fe content may be related to metal uptake via plant-derived liquids and species-specific regulatory mechanisms. The metal pollution index and biota-to-soil accumulation factors, calculated by using the ant body metal content of the two species, indicate an overall decrease of soil heavy metal concentrations with increase of the site age, which reflects the degree of pollution related to the mine site age. The concentrations of total and available heavy metals (Fe, Zn, Mn, Pb, and Cu) were significantly lower in the ant nest debris soil as compared to the reference soil. The results of the present study highlight the role of ants as bioindicators and in bioremediation of contaminated soil.  相似文献   
553.
A series of laboratory-based incubations using a stable isotope tracer technique was applied to measure the net and gross fluxes of CH(3)Cl and CH(3)Br as well as the net fluxes of CHCl(3) from surface soils of the Sacramento-San Joaquin Delta of California. Annually averaged flux measurements show that these mineral/oxidized peat soils are a net source of CH(3)Cl (140 ± 266 nmol m(-2) d(-1)) and CHCl(3) (258 ± 288 nmol m(-2) d(-1)), and a net sink of CH(3)Br (-2.3 ± 4.5 nmol m(-2) d(-1)). Gross CH(3)Cl and CH(3)Br fluxes are strongly influenced by both soil moisture and temperature: gross production rates of CH(3)Cl and CH(3)Br are linearly correlated with temperature, whereas gross consumption rates exhibit Gaussian relationships with maximum consumption at soil moisture levels between 20 and 30% volumetric water content (VWC) and a temperature range of 25 to 35 °C. Although soil moisture and soil temperature strongly affect consumption rates, the range of gross consumption rates overall is limited (-506 ± 176 nmol m(-2) d(-1) for CH(3)Cl and -12 ± 4 nmol m(-2) d(-1) for CH(3)Br) and is similar to rates reported in previous studies. CHCl(3) fluxes are not correlated with methyl halide fluxes, temperature, or soil moisture. The annual emission rates of CHCl(3) from the Sacramento-San Joaquin Delta are found to be a potentially significant local source of this compound.  相似文献   
554.
This paper summarizes the findings obtained in a monitoring study to understand the sources and processes affecting the quality of shallow and deep groundwater near central air conditioning plant site in Trombay region by making use of physicochemical and biological analyses. All the measured parameters of the groundwaters indicate that the groundwater quality is good and within permissible limits set by (Indian Bureau of Standards 1990). Shallow groundwater is dominantly of Na–HCO3 type whereas deep groundwater is of Ca–Mg–HCO3 type. The groundwater chemistry is mainly influenced by dissolution of minerals and base exchange processes. High total dissolved solids in shallow groundwater compared to deeper ones indicate faster circulation of groundwater in deep zone preferably through fissures and fractures whereas groundwater flow is sluggish in shallow zone. The characteristic ionic ratio values and absence of bromide point to the fact that seawater has no influence on groundwater system.  相似文献   
555.
Cystatins are thiol proteinase inhibitors ubiquitously present in the mammalian body. They serve a protective function to regulate the activities of endogenous proteinases, which may cause uncontrolled proteolysis and damage. In the present study, the effect of benzo(a)pyrene [BaP] on lung cystatin was studied to explore the hazardous effects of environmental pollutant on structural and functional integrity of the protein. The basic binding interaction was studied by UV-absorption, FT-IR, and fluorescence spectroscopy. The enhancement of total protein fluorescence with a red shift of 5 nm suggests structural scratch of lung cystatin by benzo(a)pyrene. Further, ANS binding studies reaffirm the unfolding of the thiol protease inhibitor (GLC-I) after treating with benzo(a)pyrene. The results of FT-IR spectroscopy reflect perturbation of the secondary conformation (alpha-helix to β-sheet) in goat lung cystatin on interaction with BaP. Finally, functional inactivation of cystatin on association with BaP was checked by its papain inhibitory activity. Benzo(a)pyrene (10 μM) caused complete inactivation of goat lung cystatin. Benzo(a)pyrene-induced loss of structure and function in the thiol protease inhibitor could provide a caution for lung injury caused by the pollutants and smokers.  相似文献   
556.
Dal Lake, a cradle of Kashmiri civilization has strong linkage with socioeconomics of the state of Jammu and Kashmir. During last few decades, anthropogenic pressures in Dal Lake Catchment have caused environmental deterioration impairing, inter-alia, sustained biotic communities and water quality. The present research was an integrated impact analysis of socioeconomic and biophysical processes at the watershed level on the current status of Dal Lake using multi-sensor and multi-temporal satellite data, simulation modelling together with field data verification. Thirteen watersheds (designated as ‘W1–W13’) were identified and investigated for land use/land cover change detection, quantification of erosion and sediment loads and socioeconomic analysis (total population, total households, literacy rate and economic development status). All the data for the respective watersheds was integrated into the GIS environment based upon multi-criteria analysis and knowledge-based weightage system was adopted for watershed prioritization based on its factors and after carefully observing the field situation. The land use/land cover change detection revealed significant changes with a uniform trend of decreased vegetation and increased impervious surface cover. Increased erosion and sediment loadings were recorded for the watersheds corresponding to their changing land systems, with bare and agriculture lands being the major contributors. The prioritization analysis revealed that W5?>?W2?>?W6?>?W8?>?W1 ranked highest in priority and W13?>?W3?>?W4?>?W11?>?W7 under medium priority. W12?>?W9?>?W10 belonged to low-priority category. The integration of the biophysical and the socioeconomic environment at the watershed level using modern geospatial tools would be of vital importance for the conservation and management strategies of Dal Lake ecosystem.  相似文献   
557.
Bagasse fly ash (BFA, a sugar industrial waste) was used as low-cost adsorbent for the uptake of arsenate and arsenite species from water. The optimum conditions for the removal of both species of arsenic were as follows: pH 7.0, concentration 50.0 μg/L, contact time 50.0 min, adsorbent dose 3.0 g/L, and temperature 20.0 °C, with 95.0 and 89.5 % removal of arsenate and arsenite, respectively. The Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich adsorption isotherms were used to analyze the results. The results of these models indicated single-layer uniform adsorption on heterogeneous surface. Thermodynamic parameters, i.e., ΔG°, ΔH°, and ΔS°, were also calculated. At 20.0 to 30.0 °C, the values of ΔG° lie in the range of ?4,722.75 to ?4,878.82 and ?4,308.80 to ?4,451.73 while the values of ΔH° and ΔS° were ?149.90 and ?121.07, and 15.61 and 14.29 for arsenate and arsenite, respectively, indicating that adsorption is spontaneous and exothermic. Pseudo-first-order kinetics was followed. In column experiments, the adsorption decreased as the flow rate increased with the maximum removal of 98.9 and 95.6 % for arsenate and arsenite, respectively. The bed depth service time and Yoon and Nelson models were used to analyze the experimental data. The adsorption capacity (N o) of BFA on column was 3.65 and 2.98 mg/cm3 for arsenate and arsenite, respectively. The developed system for the removal of arsenate and arsenite species is economic, rapid, and capable of working under natural conditions. It may be used for the removal of arsenic species from any contaminated water resources.  相似文献   
558.
Abstract

Soil bound 14C‐labeled residues were released by four different physiological groups of microorganisms from an organic soil treated with 14C‐ring‐labeled prometryn [2‐(methylthio) ‐4,6‐bis(isopropylamino)‐s‐triazine]. The extent to which the different microbial populations released bound 14C residues (25–30% of the total bound 14C) from the Y‐irradiated soil after 28 days incubation did not differ considerably. Analysis of the extractable material from the incubated soil showed the presence of small amounts of the parent compound, and its hydroxy and mono‐N‐dealkylated analogues. Low level of 14CO2 (1.5–3.0% of the total bound 14C) was evolved from the microbial systems indicating ring cleavage of the released material as being a very minor reaction.  相似文献   
559.
Controlled release (CR) formulations of carbofuran and imidacloprid were prepared employing polyvinyl chloride and carboxymethyl cellulose (CMC) and their bioefficacy was evaluated against the aphid, Aphis gossypii and leafhopper, Amrasca biguttula biguttula Ishida on potato crop. The CR formulations of carbofuran and imidacloprid provided better or equal control of the pests than commercial formulations. CMC-based formulation provided a superior control of both the pests. The Imida-CMC, which showed the lowest population of leaf hopper (10.50 leafhopper/100 cl), provided significantly superior control among all treatments after 35 days after germination (DAG). The residue of carbofuran and imidacloprid in potato tuber and soils were not detectable at the time of harvesting in any one of the formulations.  相似文献   
560.
Plant–bacteria partnerships have been extensively studied and applied to improve crop yield. In addition to their application in agriculture, a promising field to exploit plant–bacteria partnerships is the remediation of soil and water polluted with hydrocarbons. Application of effective plant–bacteria partnerships for the remediation of hydrocarbons depend mainly on the presence and metabolic activities of plant associated rhizo- and endophytic bacteria possessing specific genes required for the degradation of hydrocarbon pollutants. Plants and their associated bacteria interact with each other whereby plant supplies the bacteria with a special carbon source that stimulates the bacteria to degrade organic contaminants in the soil. In return, plant associated-bacteria can support their host plant to overcome contaminated-induced stress responses, and improve plant growth and development. In addition, plants further get benefits from their associated-bacteria possessing hydrocarbon-degradation potential, leading to enhanced hydrocarbon mineralization and lowering of both phytotoxicity and evapotranspiration of volatile hydrocarbons. A better understanding of plant–bacteria partnerships could be exploited to enhance the remediation of hydrocarbon contaminated soils in conjunction with sustainable production of non-food crops for biomass and biofuel production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号