首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  国内免费   4篇
安全科学   2篇
废物处理   1篇
环保管理   7篇
综合类   10篇
基础理论   14篇
污染及防治   27篇
评价与监测   2篇
社会与环境   1篇
  2024年   2篇
  2023年   6篇
  2022年   15篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1994年   2篇
  1992年   1篇
  1989年   2篇
  1974年   1篇
  1967年   1篇
  1966年   1篇
  1963年   1篇
  1961年   1篇
  1958年   1篇
排序方式: 共有64条查询结果,搜索用时 0 毫秒
41.
The Coordinating Research Council held its 14th Vehicle Emissions Workshop in March 2004, where results of the most recent on-road vehicle emissions research were presented. We summarize ongoing work from researchers who are engaged in improving our understanding of the contribution of mobile sources to ambient air quality and emission inventories. Participants in the workshop discussed efforts to improve mobile source emission models, light- and heavy-duty vehicle emissions measurements, on- and off-road emissions measurements, effects of fuels and lubricating oils on emissions, as well as topics for future research.  相似文献   
42.
The Coordinating Research Council held its thirteenth Vehicle Emissions Workshop in April 2003, when results of the most recent on-road vehicle emissions research were presented. Ongoing work from researchers who are engaged in improving understanding of the contribution of mobile sources to ambient air quality and emission inventories is summarized here. Participants in the workshop discussed efforts to improve mobile source emission models, the role of on-board diagnostic systems in inspection and maintenance programs, light- and heavy-duty vehicle emissions measurements, on- and off-road emissions measurements, effects of fuels and lubricating oils on emissions, as well as topics for future research.  相似文献   
43.

A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.

  相似文献   
44.
Environmental Science and Pollution Research - Soil contamination by heavy metals is one of the major abiotic stresses that cause retarded plant growth and low productivity. Among the heavy metals,...  相似文献   
45.

The rising global population is inducing a fast increase in the amount of municipal waste and, in turn, issues of rising cost and environmental pollution. Therefore, alternative treatments such as waste-to-energy should be developed in the context of the circular economy. Here, we review the conversion of municipal solid waste into energy using thermochemical methods such as gasification, combustion, pyrolysis and torrefaction. Energy yield depends on operating conditions and feedstock composition. For instance, torrefaction of municipal waste at 200 °C generates a heating value of 33.01 MJ/kg, while the co-pyrolysis of cereals and peanut waste yields a heating value of 31.44 MJ/kg at 540 °C. Gasification at 800 °C shows higher carbon conversion for plastics, of 94.48%, than for waste wood and grass pellets, of 70–75%. Integrating two or more thermochemical treatments is actually gaining high momentum due to higher energy yield. We also review reforming catalysts to enhance dihydrogen production, such as nickel on support materials such as CaTiO3, SrTiO3, BaTiO3, Al2O3, TiO3, MgO, ZrO2. Techno-economic analysis, sensitivity analysis and life cycle assessment are discussed.

  相似文献   
46.
P. Natarajan 《Marine Biology》1989,101(3):347-354
Phasing of persistent circatidal rhythmicity to an artificial tidal cycle was assessed in the prawns Penaeus indicus Milne Edwards and P. monodon (Fabricius) collected from the Vellar estuary, South India, in the period between June and December 1984. Simulated 6 h cycles of 20 and 30 S, and 6 h cycles of 20° and 30°C induced a persistent tidal rhythmicity after 20 cycles. The imposed 6 h cycles of 25 and 30 S, and 25° and 30°C induced tidal rhythms after 30 cycles. In both cases, re-established tidal activity rhythms were evident for at least 48 h — higher activity occurring during the higher salinity and lower temperature phases of the simulated tidal cycles. Artificial tidal cycles of still water and running water synchronized the tidal rhythm after 20 cycles. Combined 30 S, 20°C, for 6 h and 20 S and 30°C for 6 h established a persistent tidal rhythm after 10 cycles, whereas wave action had no influence on tidal synchronization. The influence of possible interactions of tidal rhythms and in situ tidal variables on circatidal activity is discussed.  相似文献   
47.
    
Environmental Chemistry Letters - Endocrine disruptors are hazardous chemicals with chronic health effects for most living organisms, inducing homeostasis, hormonal imbalances, cancer, reproductive...  相似文献   
48.
  总被引:1,自引:0,他引:1  
Arylsulfatase activity and arylsulfatase-producing bacteria were estimated in sediment samples collected from 3 different biotopes: marine, estuarine, and mangrove. No direct relationship could be established between activity and the number of bacteria at any station. In general, clayey sediments always harboured more arylsulfatase producers than sandy sediments, irrespective of salinity variations. Of the 3 biotopes investigated, the mangrove area exhibited maximum activity. The enzyme showed two pH optima, one at 6.2, the other at 9.0. The optimum substrate concentration was 12x10-4M. Higher substrate concentrations tended to inhibit arylsulfatase activity. The recovery of added phenolphthalein was maximum only at pH 6.2; KCN, Na2So4, and KH2Po4 inhibited enzyme activity by 65.5, 46.8 and 37.5%, respectively. More than one type of arylsulfatase may be present in marine sediments; further studies on the role of arylsulfatases are required, since arylsulfatases have been reported to bear on the formation and hardening of exoskeletons in marine forms.  相似文献   
49.
50.
  总被引:1,自引:0,他引:1  
The problem of textile dye pollution has been addressed by various methods,mainly physical,chemical,biological,and acoustical.These methods mainly separate and/or remove the dye present in water.Recently,advanced oxidation processes(AOP)have been focused for removal of dye from waste water due to their advantages such as ecofriendly,economic and capable to degrade many dyes or organic pollutant present in water.Photocatalysis is one of the advance oxidation processes,mainly carried out under irradiation of light and suitable photocatalytic materials.The photocatalytic activity of the photocatalytic materials mainly depends on the band gap,surface area,and generation of electron–hole pair for degradation dyes present in water.It has been observed that the surface area plays a major role in photocatalytic degradation of dyes,by providing higher surface area,which leads to the higher adsorption of dye molecule on the surface of photocatalyst and enhances the photocatalytic activity.This present review discusses the synergic effect of adsorption of dyes on the photocatalytic efficiency of various nanostructured high surface area photocatalysts.In addition,it also provides the properties of the water polluting dyes,their mechanism and various photocatalytic materials;and their morphology used for the dye degradation under irradiation of light along with the future prospects of highly adsorptive photocatalytic material and their application in photocatalytic removal of dye from waste water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号