● Mechanical behavior of MBT waste affected by loading rate was investigated.● Shear strength ratio of MBT waste increases with an increase in loading rate.● Cohesion is inversely related to loading rate.● Internal friction angles are positively related to loading rate.● MBT waste from China shows smaller range of φ. Mechanical biological treatment (MBT) technology has attracted increasing attention because it can reduce the volume of waste produced. To deal with the current trend of increasing waste, MBT practices are being adopted to address waste generated in developing urban societies. In this study, a total of 20 specimens of consolidated undrained triaxial tests were conducted on waste obtained from the Hangzhou Tianziling landfill, China, to evaluate the effect of loading rate on the shear strength parameters of MBT waste. The MBT waste samples exhibited an evident strain-hardening behavior, and no peak was observed even when the axial strain exceeded 25%. Further, the shear strength increased with an increase in the loading rate; the effect of loading rate on shear strength under a low confining pressure was greater than that under a high confining pressure. Furthermore, the shear strength parameters of MBT waste were related to the loading rate. The relationship between the cohesion, internal friction angle, and logarithm of the loading rate could be fitted to a linear relationship, which was established in this study. Finally, the ranges of shear strength parameters cohesion c and effective cohesion c ´ were determined as 1.0–8.2 kPa and 2.1–14.9 kPa, respectively; the ranges of the internal friction angle φ and effective internal friction angle φ ´ were determined as 16.2°–29° and 19.8°–43.9°, respectively. These results could be used as a valuable reference for conducting stability analyses of MBT landfills. 相似文献
This work presents an overall introduction to the Station for Observing Regional Processes of the Earth System–SORPES in Nanjing, East China, and gives an overview about main scientific findings in studies of air pollution-weather/climate interactions obtained since 2011. The main results summarized in this paper include overall characteristics of trace gases and aerosols, chemical transformation mechanisms for secondary pollutants like O3, HONO and secondary inorganic aerosols, and the air pollution–weather/climate interactions and feedbacks in mixed air pollution plumes from sources like fossil fuel combustion, biomass burning and dust storms. The future outlook of the development plan on instrumentation, networking and data-sharing for the SORPES station is also discussed.
● The emission reduction causes significant change in organic aerosol composition.● The atmospheric oxidizing capacity improved during emission reduction.● The mixed oxygenated organic aerosol contributed higher during emission reduction. Organic aerosol (OA) is a major component of atmospheric particulate matter (PM) with complex composition and formation processes influenced by various factors. Emission reduction can alter both precursors and oxidants which further affects secondary OA formation. Here we provide an observational analysis of secondary OA (SOA) variation properties in Yangtze River Delta (YRD) of eastern China in response to large scale of emission reduction during Chinese New Year (CNY) holidays from 2015 to 2020, and the COVID-19 pandemic period from January to March, 2020. We found a 17% increase of SOA proportion during the COVID lockdown. The relative enrichment of SOA is also found during multi-year CNY holidays with dramatic reduction of anthropogenic emissions. Two types of oxygenated OA (OOA) influenced by mixed emissions and SOA formation were found to be the dominant components during the lockdown in YRD region. Our results highlight that these emission-reduction-induced changes in organic aerosol need to be considered in the future to optimize air pollution control measures. 相似文献
Effective planning of resources management is important for facilitating socio-economic development and eco-environmental sustainability. Such a planning effort is complicated with a variety of uncertain, dynamic and nonlinear factors as well as their interactions. In this study, an inexact-stochastic quadratic programming with recourse (ISQP-R) method is developed for reflecting dynamics of system uncertainties based on a complete set of scenarios as well as tackling nonlinearities in the objective function to reflect the effects of marginal utility on system benefits and costs. Moreover, since penalties are exercised with recourse against any infeasibility, the ISQP-R can support the analysis of various policy scenarios that are associated with different levels of economic consequences when the promised targets are violated. The developed method is applied to a case study of planning resources management and developing regional ecological sustainability. The results have been generated and are helpful for decision makers in not only identifying desired resources-allocation strategies but also gaining insight into the tradeoff between economic objective and eco-environment violation risk. 相似文献