首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1615篇
  免费   17篇
  国内免费   40篇
安全科学   22篇
废物处理   108篇
环保管理   154篇
综合类   140篇
基础理论   290篇
环境理论   2篇
污染及防治   548篇
评价与监测   298篇
社会与环境   106篇
灾害及防治   4篇
  2023年   59篇
  2022年   172篇
  2021年   114篇
  2020年   25篇
  2019年   46篇
  2018年   82篇
  2017年   90篇
  2016年   109篇
  2015年   44篇
  2014年   79篇
  2013年   177篇
  2012年   75篇
  2011年   88篇
  2010年   68篇
  2009年   58篇
  2008年   71篇
  2007年   55篇
  2006年   63篇
  2005年   34篇
  2004年   23篇
  2003年   20篇
  2002年   28篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1989年   2篇
  1988年   3篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1979年   2篇
  1969年   1篇
  1966年   1篇
  1965年   2篇
  1964年   2篇
  1962年   2篇
  1961年   4篇
  1958年   3篇
  1957年   3篇
  1956年   2篇
  1955年   4篇
  1953年   1篇
排序方式: 共有1672条查询结果,搜索用时 31 毫秒
991.
992.
In the first multipurpose river valley planning of India, the vast resources of Damodar River Basin (DRB) (eastern India) are not only to be envisioned in their entirety but also to be developed in a unified manner where the water, land, and people are simultaneously bounded in a seamless web. Four large dams (Konar, Tilaiya, Maithon, and Panchet), Durgapur barrage, and Tenughat reservoir are built to tamp the flood-prone Damodar River using water resource in an integrated method. The functionality of Damodar fluvial system is controlled by dams, barrage, weirs, sluices, embankments, and canals, maintaining a dynamic equilibrium between fluvial processes and anthropogenic processes. Carrying more than 50 years of legacy, the existing drainage and flood control system of Damodar Valley Corporation has aggravated a number of hydrogeomorphic problems especially in lower DRB, viz. siltation of river bed and reservoirs, uncontrolled monsoonal stream flow, declining carrying capacity of lower course, drainage congestion, low-magnitude annual floods, channel shifting, de-functioned canals, decay of paleochannels, decline of ground water level, and less replenishing of soils with fresh silts. The present paper is mainly tried to investigate the pre-dam and post-dam hydrogeomorphic variability in relation to flood risk and drawbacks of Damodar Valley Multipurpose Project. Specifically, the annual peak flow of Damodar shifts from August to September due to dam construction and reservoir storage. Applying the annual flood series of log Pearson type III distribution, we have estimated post-dam 5-year peak discharge of above 5,300 m3 s?1 and 100-year flood of above 11,000 m3 s?1. Due to siltation, the bankfull discharges of sample segments are gradually declined up to 4,011 m3 s?1, 2,366 m3 s?1, and 1,542 m3 s?1, respectively, having recurrence interval of 1.18–3.18 years only. With the regulation of monsoon flow, the standard sinuosity index is gradually increased downstream, having high dominance of hydraulic factors in respect of topographic factors. The upstream section of study area (Rhondia to Paikpara) now shows the dominance of aggradational landforms, braiding, avulsion, high width–depth ratio, breaching of right bank, and valley widening, but downstream of Barsul the phenomena of bank erosion, confined sinuosity, low width–depth ratio, and narrowness are more pronounced.  相似文献   
993.
Ship-based observations of atmospheric carbon dioxide (CO2) concentration over the Bay of Bengal (BoB) between 17 July 2009 and 17 Aug 2009 offered an excellent opportunity to evaluate the land–ocean contrast of surface CO2 and facilitated its comparison with model simulated CO2 concentrations. Elevated values of CO2 with large variability near the coastal region and relatively low values with correspondingly lower variability over the open ocean suggest that this observed CO2 variability over the ocean essentially captures the differences in terrestrial and oceanic CO2 fluxes. Although the region under investigation is well known for its atmospheric intraseasonal oscillations of Indian summer monsoon during July and August, the limited duration of observations performed from a moving ship in a research cruise, is not able to capture any high-frequency variability of atmospheric CO2 concentrations. But band-passed sea surface temperature and wind anomalies do indicate strong intraseasonal variability over the study region during the observational period. The synoptic data, albeit quite short in duration, thus offer a clear benchmark for abrupt variability of CO2 concentration between land and ocean.  相似文献   
994.
The present work is a multi-temporal satellite based study on the spatial dynamic of an important coastal habitat, the Pichavaram mangrove ecosystem, over a period of 15 years. The Pichavaram mangrove forest near Chidambaram, South India is the second largest mangrove forest in the world. Unsupervised classification, the Iterative Self Organising Data Analysis Technique (ISODATA), has been used to classify the mangrove cover into the open and dense classes. The status of the classes has been monitored using Landsat TM of 1991, 2001, and Resourcesat–1 LISS IV of 2006 satellite data. The study demonstrated that by classifying mangrove ecosystem into just the 3 classes using remote sensing data and by studying their temporal variations, it is possible to get a reasonably accurate picture of the extent and condition of the mangrove ecosystem. The total area of the Pichavaram mangrove showed a net increase of 2.51 km2 within a span of 15 years (1991 to 2006). The hot spots that are at a risk of being degraded, and on the other hand, the mangrove areas that are well managed are identified using Geographical Information System (GIS) tools for the restoration and conservation measures.  相似文献   
995.
Frequent erosion along the banks of the river Bhagirathi–Hooghly constitutes one of the most important hazards in West Bengal, India. This frequent nature of erosion is induced by hydraulic control by the construction of Farakka Barrage in 1975 and Indo-Bangladesh water sharing treaty of 1977 and 1996. Water sharing treaties result in fluctuating discharge on 10-day scale in the lean period (January–May). The stream discharge variability affects the bank erosion through its impacts on erodibility factors of banks. It has been observed that in the pre-Farakka period bank erosion was huge only during the monsoon months, and rest of the year, there was little or no bank erosion because in the pre-monsoon and post-monsoon periods, the river Bhagirathi received very little or no discharge from the river Ganga. But in the post-Farakka period, the river Bhagirathi received considerable amount of water in variable quantities from the river Ganga, especially in lean period which has steadied the river bank erosion in the year round. It is to mention that benefits of this planning are to survive the port-industrial economy of South Bengal and provision of fresh water for inhabitants of Kolkata. So beneficiaries of this controlled hydrology must have to pay affluent tax for the victims by this project. In this paper, the nature, mechanism and pattern of bank erosion and its impact on socio-economic vulnerability of the people in the selected erosion-prone areas have been depicted. At the end, a search for social justice for the victims has been articulated from the perspective of Pareto-optimal justice.  相似文献   
996.
A water safety plan for the city of Nagpur was developed by the National Environmental Engineering Research Institute (NEERI) and Nagpur Municipal Corporation (NMC). Possible hazards were identified through field visits. Based on this, an improvement plan was drawn up to suggest corrective actions and a time frame for implementation. The findings of this study are being used to modify or repair components of the water supply system and upgrade management procedures. This paper highlights the lessons learnt during implementation of the WSP and the key challenges faced.  相似文献   
997.
Food and Environmental Virology - Phage therapy is revolving to address the issues mainly dealing with antibiotic resistance in the pathogenic bacteria. Among the drug-resistant microbial...  相似文献   
998.
The fluoride ion removal from aqueous solution using synthesized Mg-Cr-Cl layered double hydroxide has been reported.Mg-Cr-Cl was characterized by X-ray powder diffraction,Fourier-transform infrared,thermo-gravimetric analysis,differential thermal analysis,and scanning electron microscope.Adsorption experiments were carried out in batch mode as a function of adsorption dosages,contact time,pH,and initial fluoride concentration to get optimum adsorption capacity.The adsorption kinetic study showed that the adsorption process followed first order kinetics.The fluoride removal was 88.5% and 77.4% at pH 7 with an adsorbent dose of 0.6 g/100 mL solution and initial fluoride concentration of 10 mg/L and 100 mg/L,respectively.The equilibrium was established at 40 min.Adsorption experiment data were fitted well with Langmuir isotherm with R 2 = 0.9924.Thermodynamic constants were also measured and concluded that the adsorption process was spontaneous and endothermic in nature.The removal percentage decreased slowly with increasing pH.This process is suitable for industrial effluents.The regeneration of the material is not possible.  相似文献   
999.
Agriculture consumes more than two-thirds of global fresh water out of which 90 % is used by developing countries. Freshwater consumption worldwide is expected to rise another 25 %by 2030 due to increase in population from 6.6 billion currently to about 8 billion by 2030 and over 9 billion by 2050. Worldwide climate change and variability are affecting water resources and agricultural production and in India Ganga Plain region is one of them. Hydroclimatic changes are very prominent in all the regions of Ganga Plain. Climate change and variability impacts are further drying the semi-arid areas and may cause serious problem of water and food scarcity for about 250 million people of the area. About 80 million ha out of total 141 million ha net cultivated area of India is rainfed, which contributes approximately 44 % of total food production has been severely affected by climate change. Further changing climatic conditions are causing prominent hydrological variations like change in drainage density, river morphology (tectonic control) & geometry, water quality and precipitation. Majority of the river channels seen today in the Ganga Plain has migrated from their historic positions. Large scale changes in land use and land cover pattern, cropping pattern, drainage pattern and over exploitation of water resources are modifying the hydrological cycle in Ganga basin. The frequency of floods and drought and its intensity has increased manifold. Ganga Plain rivers has changed their course with time and the regional hydrological conditions shows full control over the rates and processes by which environments geomorphically evolve. Approximately 47 % of total irrigated area of the country is located in Ganga Plain, which is severely affected by changing climatic conditions. In long run climate change will affect the quantity and quality of the crops and the crop yield is going to be down. This will increase the already high food inflation in the country. The warmer atmospheric temperatures and drought conditions will increase soil salinization, desertification and drying-up of aquifer, while flooding conditions will escalate soil erosion, soil degradation and sedimentation. The aim of this study is to understand the impact of different hydrological changes due to climatic conditions and come up with easily and economically feasible solutions effective in addressing the problem of water and food scarcity in future.  相似文献   
1000.
This work presents contact angle measurements for CO2–water–quartz/calcite systems at general sequestration pressure and temperature conditions (200–3000 psig and 77–122 °F). The effect of drop volume, repeated exposure of the substrates to dense water saturated CO2, pressure and temperature on the contact angles is examined. In the 1st measurement cycle, the contact angles for the quartz substrate varied from 46 to 48° and 47 to 46° for gaseous (water saturated) CO2 and liquid (water saturated) CO2 respectively, at 77 °F. For calcite substrate, these values varied from 45 to 48° and 42 to 40°, respectively. Remarkably, this work highlights a characteristic permanent shift in the contact angle data with repeated exposure to dense, water saturated, CO2. The contact angle data trends after repeated exposure to the dense, water saturated CO2 varied from 89 to 91° and 85 to 80° for the quartz substrate for gaseous (water saturated) CO2 and liquid (water saturated) CO2 respectively, at 77 °F. For calcite substrates, these values varied from 60 to 59° and 54 to 48°, respectively. This important observation has serious implications towards the design and safety issues, as a permanent positive contact angle shift indicates lower CO2 retention capabilities of sequestration sites due to a reduction in the capillary pressure. It is further confirmed that the permanent shift in the contact angle is due to surface phenomena. With an increase in temperature (from 77 to 122 °F), the contact angle shift is reduced from about 45° to about 20° for quartz substrates. Other observations in the contact angle data with respect to pressure are in good agreement with the trends reported in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号