首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   0篇
  国内免费   3篇
安全科学   1篇
废物处理   14篇
环保管理   10篇
综合类   12篇
基础理论   47篇
污染及防治   21篇
评价与监测   9篇
  2023年   23篇
  2022年   14篇
  2021年   5篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   20篇
  2012年   6篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
81.

The development and recycling of biomass production can partly solve issues of energy, climate change, population growth, food and feed shortages, and environmental pollution. For instance, the use of seaweeds as feedstocks can reduce our reliance on fossil fuel resources, ensure the synthesis of cost-effective and eco-friendly products and biofuels, and develop sustainable biorefinery processes. Nonetheless, seaweeds use in several biorefineries is still in the infancy stage compared to terrestrial plants-based lignocellulosic biomass. Therefore, here we review seaweed biorefineries with focus on seaweed production, economical benefits, and seaweed use as feedstock for anaerobic digestion, biochar, bioplastics, crop health, food, livestock feed, pharmaceuticals and cosmetics. Globally, seaweeds could sequester between 61 and 268 megatonnes of carbon per year, with an average of 173 megatonnes. Nearly 90% of carbon is sequestered by exporting biomass to deep water, while the remaining 10% is buried in coastal sediments. 500 gigatonnes of seaweeds could replace nearly 40% of the current soy protein production. Seaweeds contain valuable bioactive molecules that could be applied as antimicrobial, antioxidant, antiviral, antifungal, anticancer, contraceptive, anti-inflammatory, anti-coagulants, and in other cosmetics and skincare products.

  相似文献   
82.

The global shift from a fossil fuel-based to an electrical-based society is commonly viewed as an ecological improvement. However, the electrical power industry is a major source of carbon dioxide emissions, and incorporating renewable energy can still negatively impact the environment. Despite rising research in renewable energy, the impact of renewable energy consumption on the environment is poorly known. Here, we review the integration of renewable energies into the electricity sector from social, environmental, and economic perspectives. We found that implementing solar photovoltaic, battery storage, wind, hydropower, and bioenergy can provide 504,000 jobs in 2030 and 4.18 million jobs in 2050. For desalinization, photovoltaic/wind/battery storage systems supported by a diesel generator can reduce the cost of water production by 69% and adverse environmental effects by 90%, compared to full fossil fuel systems. The potential of carbon emission reduction increases with the percentage of renewable energy sources utilized. The photovoltaic/wind/hydroelectric system is the most effective in addressing climate change, producing a 2.11–5.46% increase in power generation and a 3.74–71.61% guarantee in share ratios. Compared to single energy systems, hybrid energy systems are more reliable and better equipped to withstand the impacts of climate change on the power supply.

  相似文献   
83.
Environmental Chemistry Letters - The rising amount of waste generated worldwide is inducing issues of pollution, waste management, and recycling, calling for new strategies to improve the waste...  相似文献   
84.
This study was undertaken to validate the “quick, easy, cheap, effective, rugged and safe” (QuEChERS) method using Golden Delicious and Starking Delicious apple matrices spiked at 0.1 maximum residue limit (MRL), 1.0 MRL and 10 MRL levels of the four pesticides (chlorpyrifos, dimethoate, indoxacarb and imidacloprid). For the extraction and cleanup, original QuEChERS method was followed, then the samples were subjected to liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) for chromatographic analyses. According to t test, matrix effect was not significant for chlorpyrifos in both sample matrices, but it was significant for dimethoate, indoxacarb and imidacloprid in both sample matrices. Thus, matrix-matched calibration (MC) was used to compensate matrix effect and quantifications were carried out by using MC. The overall recovery of the method was 90.15% with a relative standard deviation of 13.27% (n = 330). Estimated method detection limit of analytes blew the MRLs. Some other parameters of the method validation, such as recovery, precision, accuracy and linearity were found to be within the required ranges.  相似文献   
85.
The aim of this study was to identify possible relationships between biochemical- superoxide dismutase (SOD), glutathione peroxidase (GPx), thiobarbituric acid reactive substances (TBARS) of mussels (Mytilus galloprovincialis) and chemical (Hg, Cd, Pb, Cr, Cu, Zn, Mn and Fe) contaminants from relatively clean area (Middle Bay) and heavily polluted area (Inner Bay) of the Izmir Bay. Sampling of mussels was performed in the beginning of May 2004. Mussel digestive glands have been used for biochemical assays. Trace metal content was determined by atomic absorption spectrophotometer using standard procedures. Metal contents in mussels collected at polluted site increased compared to the middle part of the bay. While there was a positive correlation between metals and SOD enzyme activity, there was a negative correlation between metals and GPx enzyme activity. An increase was observed in SOD enzyme activity and a decrease of GPx enzyme activity at the inner part of the bay.  相似文献   
86.
The biotopes of ecological importance in urban environments worldwide are under the pressure of many negative factors such as urbanization, air pollution, human disturbance, etc. Biotope mapping is an important tool for urban planning and management and of importance for the protection of biotopes for future generations. The biotopes in Antalya city of Turkey, which has faced to a great population pressure due to tourism developments and immigration in the last two decades, were investigated in this study. The selective biotope mapping method was used and major biotope sites were determined by the interpretation of panchromatic aerial photographs, assisted with field verifications. A sensitivity assessment based on two parameters, the rarity and the re-establishment ability of biotopes, was made as it was considered important information for urban planning and management. According to the results of the assessment, the majority of biotopes in Antalya city were found to be very sensitive or sensitive. It was concluded that insufficient legislation, the lack of an ecological urban planning approach and poor urban management are the most important reasons for today's pressures on urban biotopes in Turkey.  相似文献   
87.
Chitosan is a natural polymer which has the property to elicit the natural defenses mechanism in plant and which can be an interesting biopesticides. It is then necessary to investigate the potential toxicity of chitosan for aquatic animal health. Metallothioneins (MTs) are low molecular weight proteins, mainly implicated in metal ion detoxification. Increase in MTs contents had been considered as a specific biomarker of metal exposure. However recently it has been demonstrated that MTs participate in several cellular functions such as regulation of growth and anti-oxidative defenses. Therefore, the induction of MTs has been investigated in the aquatic worms Tubifex tubifex exposed to chitosan. MTs levels in exposed worm increased significantly (p > 0.05) after 2, 4, and 7 days of exposure to different concentrations of chitosan (maximum + 158.19 +/- 10.2% after 2 days of exposure to 125 mgl(-1) of chitosan). Several antioxidant parameters including glutathione (GSH), glutathione-S-transferase (GST), glutathione reductase (GR), and catalase (CAT) were quantified in T. tubifex after 2, 4, and 7 days of exposure to chitosan. Exposure to chitosan had a negative effect on T. tubifex growth (maximum effect -6.11 +/- 1.6% after 7 days with 125 mgl(-1)) demonstrating the toxic effect of the pesticide. This growth rate decrease was accompanied by a reduction in protein contents. The activity of catalase (CAT), glutathione-S-transferase (GST), and glutathione reductase (GR) increased in response to the chitosan demonstrating an oxidative stress in the worms.  相似文献   
88.

Traditional fertilizers are highly inefficient, with a major loss of nutrients and associated pollution. Alternatively, biochar loaded with phosphorous is a sustainable fertilizer that improves soil structure, stores carbon in soils, and provides plant nutrients in the long run, yet most biochars are not optimal because mechanisms ruling biochar properties are poorly known. This issue can be solved by recent developments in machine learning and computational chemistry. Here we review phosphorus-loaded biochar with emphasis on computational chemistry, machine learning, organic acids, drawbacks of classical fertilizers, biochar production, phosphorus loading, and mechanisms of phosphorous release. Modeling techniques allow for deciphering the influence of individual variables on biochar, employing various supervised learning models tailored to different biochar types. Computational chemistry provides knowledge on factors that control phosphorus binding, e.g., the type of phosphorus compound, soil constituents, mineral surfaces, binding motifs, water, solution pH, and redox potential. Phosphorus release from biochar is controlled by coexisting anions, pH, adsorbent dosage, initial phosphorus concentration, and temperature. Pyrolysis temperatures below 600 °C enhance functional group retention, while temperatures below 450 °C increase plant-available phosphorus. Lower pH values promote phosphorus release, while higher pH values hinder it. Physical modifications, such as increasing surface area and pore volume, can maximize the adsorption capacity of phosphorus-loaded biochar. Furthermore, the type of organic acid affects phosphorus release, with low molecular weight organic acids being advantageous for soil utilization. Lastly, biochar-based fertilizers release nutrients 2–4 times slower than conventional fertilizers.

  相似文献   
89.
90.
Abstract

The bran toxic baits (0.5 % w/w) of five oxime carbamate pesticides; aldicarb, aldoxycarb, methomyl, oxamyl and thiofanox were tested for their molluscicidal activity against Theba pisana snails under Laboratory conditions. In addition, the in vivo effects of these compounds on seven vital enzymes namely Acetylcholin‐esterase (AchE), glutathion‐S‐transferase (GST), glutamic oxlaoacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), acid phosphatase (AcP), alkaline phosphatase (AIP), and adenosine triphosphatase (ATPase) activities of the snail tissue were also investigated after 1,3, and 5 days of exposure. The results showed that methomyl was the most potent candidate, whereas thiofanox was the least effective one against the snails. LT50’s values of aldicarb, aldoxycarb, methomyl, oxamyl and thiofanox were 5.77, 4.69, 2.31, 3.97 and 6.67 days, respectively. Results of the potency of the tested pesticides against AchE activity were in harmony with the toxicity of these compounds to snails. AchE, AcP, and AIP activities were inhibited by the tested pesticides. GST activity was inhibited by aldicarb but stimulated by oxamyl and thiofanox. Methomyl and oxamyl lead to significant elevation of GOT and GPT, whereas thiofanox treated snail induced a reduction of both enzymes activities. Aldicarb and aldoxycarb caused significant induction of ATPase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号