首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2244篇
  免费   56篇
  国内免费   21篇
安全科学   90篇
废物处理   77篇
环保管理   426篇
综合类   475篇
基础理论   567篇
环境理论   6篇
污染及防治   471篇
评价与监测   127篇
社会与环境   57篇
灾害及防治   25篇
  2023年   18篇
  2022年   37篇
  2021年   49篇
  2020年   24篇
  2019年   43篇
  2018年   54篇
  2017年   66篇
  2016年   78篇
  2015年   50篇
  2014年   67篇
  2013年   166篇
  2012年   89篇
  2011年   129篇
  2010年   84篇
  2009年   98篇
  2008年   111篇
  2007年   104篇
  2006年   110篇
  2005年   58篇
  2004年   56篇
  2003年   62篇
  2002年   50篇
  2001年   31篇
  2000年   48篇
  1999年   29篇
  1998年   21篇
  1997年   13篇
  1996年   23篇
  1995年   22篇
  1994年   25篇
  1993年   15篇
  1992年   19篇
  1991年   18篇
  1990年   15篇
  1989年   19篇
  1988年   14篇
  1987年   11篇
  1986年   13篇
  1985年   10篇
  1983年   12篇
  1982年   14篇
  1981年   18篇
  1963年   11篇
  1958年   9篇
  1930年   9篇
  1929年   10篇
  1927年   11篇
  1926年   15篇
  1925年   12篇
  1921年   9篇
排序方式: 共有2321条查询结果,搜索用时 64 毫秒
151.
亚洲正在快速进行城市化,并日益走向“消费型社会”,从全球来看,亚洲的固体垃圾管理面临着更为严峻的挑战 .根据已有数据及发展趋势可以预测 2025年的垃圾数量及成分 .基于低收入国家垃圾数量的超高速增长,在今后的 25年中,垃圾总量将至少会翻一倍 .出于对更广泛商业行为的重视,特提出了区域控制建议 .  相似文献   
152.
Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79–0.91) and CR-24 (r 2 = 0.76–0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP.  相似文献   
153.
Traditional regression techniques such as ordinary least squares (OLS) are often unable to accurately model spatially varying data and may ignore or hide local variations in model coefficients. A relatively new technique, geographically weighted regression (GWR) has been shown to greatly improve model performance compared to OLS in terms of higher R 2 and lower corrected Akaike information criterion (AICC). GWR models have the potential to improve reliabilities of the identified relationships by reducing spatial autocorrelations and by accounting for local variations and spatial non-stationarity between dependent and independent variables. In this study, GWR was used to examine the relationship between land cover, rainfall and surface water habitat in 149 sub-catchments in a predominately agricultural region covering 2.6 million ha in southeast Australia. The application of the GWR models revealed that the relationships between land cover, rainfall and surface water habitat display significant spatial non-stationarity. GWR showed improvements over analogous OLS models in terms of higher R 2 and lower AICC. The increased explanatory power of GWR was confirmed by the results of an approximate likelihood ratio test, which showed statistically significant improvements over analogous OLS models. The models suggest that the amount of surface water area in the landscape is related to anthropogenic drainage practices enhancing runoff to facilitate intensive agriculture and increased plantation forestry. However, with some key variables not present in our analysis, the strength of this relationship could not be qualified. GWR techniques have the potential to serve as a useful tool for environmental research and management across a broad range of scales for the investigation of spatially varying relationships.  相似文献   
154.
155.
Jialing River is the largest tributary in the catchment area of Three Gorges Reservoir, and it is also one of the important areas of sediment yield in the upper reaches of the Yangtze River. In recent years, significant changes of water and sediment characteristics have taken place. The "Long Control" Project implemented since 1989 had greatly changed the surface appearance of the Jialing River Watershed (JRW), and it had made the environments of the watershed sediment yield and sediment transport change significantly. In this research, the Revised Universal Soil Loss Equation was selected and used to predict the annual average amount of soil erosion for the special water and sediment environments in the JRW after the implementation of the "Long Control" Project, and then the rainfall–runoff modulus and the time factor of governance were both considered as dynamic factors, the dynamic sediment transport model was built for soil erosion monitoring and forecasting based on the average sediment yield model. According to the dynamic model, the spatial and temporal distribution of soil erosion amount and sediment transport amount of the JRW from 1990 to 2007 was simulated using geographic information system (GIS) technology and space-grid algorithm. Simulation results showed that the average relative error of sediment transport was less than 10% except for the extreme hydrological year. The relationship between water and sediment from 1990 to 2007 showed that sediment interception effects of the soil and water conservation projects were obvious: the annual average sediment discharge reduced from 145.3 to 35 million tons, the decrement of sediment amount was about 111 million tons, and decreasing amplitude was 76%; the sediment concentration was also decreased from 2.01 to 0.578 kg/m3. These data are of great significance for the prediction and estimation of the future changing trends of sediment storage in the Three Gorges Reservoir and the particulate non-point source pollution load carried by sediment transport from watershed surface.  相似文献   
156.
Enteric viruses monitoring in surface waters requires the concentration of viruses before detection assays. The aim of this study was to evaluate different methods in terms of recovery efficiencies of bacteriophage PP7 of Pseudomonas aeruginosa, measured by real-time PCR, using it as a viral control process in water analysis. Different nucleic acid extraction methods (silica–guanidinium thiocyanate, a commercial kit (Qiagen Viral RNA Kit) and phenol–chloroform with alcohol precipitation) exhibited very low recovery efficiencies (0.08–4.18 %), being the most efficient the commercial kit used for subsequent experiments. To evaluate the efficiency of three concentration methods, PBS (as model for clean water) and water samples from rivers were seeded to reach high (HC, 106 pfu ml?1) and low concentrations (LC, 104 pfu ml?1) of PP7. Tangential ultrafiltration proved to be more efficient (50.36?±?12.91, 17.21?±?9.22 and 12.58?±?2.35 % for HC in PBS and two river samples, respectively) than adsorption–elution with negatively charged membranes (1.00?±?1.34, 2.79?±?2.62 and 0.05?±?0.08 % for HC in PBS and two river samples, respectively) and polyethylene glycol precipitation (15.95?±?7.43, 4.01?±?1.12 and 3.91?±?0.54 %, for HC in PBS and two river samples, respectively), being 3.2–50.4 times more efficient than the others for PBS and 2.7–252 times for river samples. Efficiencies also depended on the initial virus concentration and aqueous matrixes composition. In consequence, the incorporation of an internal standard like PP7 along the process is useful as a control of the water concentration procedure, the nucleic acid extraction, the presence of inhibitors and the variability of the recovery among replicas, and for the calculation of the sample limit of detection. Thus, the use of a process control, as presented here, is crucial for the accurate quantification of viral contamination.  相似文献   
157.
158.
This study evaluates the effect of emission reductions at two coal-fired power plants in northwestern Colorado on a nearby wilderness area. Control equipment was installed at both plants during 1999–2004 to reduce SO2 and NOx emissions. One challenge was separating the effects of local from regional emissions, which also declined during the study period. The long-term datasets examined confirm that emission reductions had a beneficial effect on air and water quality in the wilderness. Despite a 75 % reduction in SO2 emissions, sulfate aerosols measured in the wilderness decreased by only 20 %. Because the site is relatively close to the power plants (<75 km), the slow rate of conversion of SO2 to sulfate, particularly under conditions of low relative humidity, might account for this less than one-to-one response. On the clearest days, emissions controls appeared to improve visibility by about 1 deciview, which is a small but perceptible improvement. On the haziest days, however, there was little improvement perhaps reflecting the dominance of regional haze and other components of visibility degradation particularly organic carbon and dust. Sulfate and acidity in atmospheric deposition decreased by 50 % near the southern end of the wilderness of which 60 % was attributed to power plant controls and the remainder to reductions in regional sources. Lake water sulfate responded rapidly to trends in deposition declining at 28 lakes monitored in and near the wilderness. Although no change in the acid–base status was observed, few of the lakes appear to be at risk from chronic or episodic acidification.  相似文献   
159.
160.
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号