首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18212篇
  免费   160篇
  国内免费   157篇
安全科学   428篇
废物处理   799篇
环保管理   2067篇
综合类   2911篇
基础理论   5315篇
环境理论   4篇
污染及防治   4546篇
评价与监测   1235篇
社会与环境   1132篇
灾害及防治   92篇
  2022年   127篇
  2021年   109篇
  2020年   101篇
  2019年   108篇
  2018年   305篇
  2017年   346篇
  2016年   496篇
  2015年   313篇
  2014年   463篇
  2013年   1220篇
  2012年   885篇
  2011年   887篇
  2010年   633篇
  2009年   607篇
  2008年   715篇
  2007年   773篇
  2006年   649篇
  2005年   885篇
  2004年   1019篇
  2003年   888篇
  2002年   528篇
  2001年   684篇
  2000年   493篇
  1999年   282篇
  1998年   177篇
  1997年   214篇
  1996年   207篇
  1995年   244篇
  1994年   237篇
  1993年   182篇
  1992年   198篇
  1991年   190篇
  1990年   207篇
  1989年   191篇
  1988年   151篇
  1987年   162篇
  1986年   153篇
  1985年   156篇
  1984年   148篇
  1983年   140篇
  1982年   125篇
  1981年   120篇
  1980年   115篇
  1979年   124篇
  1978年   100篇
  1977年   113篇
  1975年   89篇
  1974年   89篇
  1973年   97篇
  1972年   88篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
Abstract

In this study, an interval minimax regret programming (IMMRP) method is developed for the planning of municipal solid waste (MSW) management under uncertainty. It improves on the existing interval programming and minimax regret analysis methods by allowing uncertainties presented as both intervals and random variables to be effectively communicated into the optimization process. The IMMRP can account for economic consequences under all possible scenarios without any assumption on their probabilities. The developed method is applied to a case study of long-term MSW management planning under uncertainty. Multiple scenarios associated with different cost and risk levels are analyzed. Reasonable solutions are generated, demonstrating complex tradeoffs among system cost, regret level, and system-failure risk. The method can also facilitate examination of the difference between the cost incurred with identified strategy and the least cost under an ideal condition. The results can help determine desired plans and policies for waste management under a variety of uncertainties.  相似文献   
972.
Large petrochemical flares, common in the Houston Ship Channel (the Ship Channel) and other industrialized areas in the Gulf of Mexico region, emit hundreds to thousands of pounds per hour of highly reactive volatile organic compounds (HRVOCs). We employed fine horizontal resolution (200 m?×?200 m) in a three-dimensional (3D) Eulerian chemical transport model to simulate two historical Ship Channel flares. The model reasonably reproduced the observed ozone rise at the nearest monitoring stations downwind of the flares. The larger of the two flares had an olefin emission rate exceeding 1400 lb/hr. In this case, the model simulated a rate of increase in peak ozone greater than 40 ppb/hr over a 12 km?×?12 km horizontal domain without any unusual meteorological conditions. In this larger flare, formaldehyde emissions typically neglected in official inventories enhanced peak ozone by as much as 16 ppb and contributed over 10 ppb to ambient formaldehyde up to ~8 km downwind of the flare. The intense horizontal gradients in large flare plumes cannot be simulated by coarse models typically used to demonstrate ozone attainment. Moreover, even the relatively dense monitoring network in the Ship Channel may not be able to detect many transient high ozone events (THOEs) caused by industrial flare emissions in the absence of stagnant air recirculation or stalled sea breeze fronts, even though such conditions are unnecessary for the occurrence of THOEs.

Implications: Flare minimization may be an important strategy to attain the U.S. federal ozone standard in industrialized areas, and to avoid inordinate exposure to formaldehyde in neighborhoods surrounding petrochemical facilities. Moreover, air quality monitoring networks, emission inventories, and chemical transport models with higher spatial and temporal resolution and more refined speciation of HRVOCs are needed to better account for the near-source air quality impacts of large olefin flares.  相似文献   
973.
A Monte-Carlo simulation of the approach to attainment of the National Ambient Air Quality Standard for ozone has been performed for the California Bay Area Air Quality Management District. Four compliance tests together with different design values are used in the simulation. The results show that the present compliance test requiring a zero-percent chance of violation and the design value represented by the fourth highest value in three years makes both the standard and the control requirement much more stringent than generally assumed. In fact, to attain the standard on a long-term basis would require annual means and annual second-highest values that are close to those of the rural background ozone. The simulation also shows that by taking into account the fluctuation of ozone concentrations in the compliance test, such as a t test, and by using a design value consistent with the test, a standard defined in terms of the three-year mean of the annual second-highest values not only is more consistent with the currently- perceived stringency of the present standard, but may also be attainable with a more reasonable control requirement.  相似文献   
974.
The role of clouds as the primary pathway for deposition of air pollutants into ecosystems has recently acquired much attention. Moreover, the acidity of clouds is highly variable over short periods of time. Cloud water collections were made at Mt. Mitchell State Park, North Carolina, using a real-time cloud and rain acidity/ conductivity (CRAC) analyzer during May to September 1987, 1988 and 1989 in an effort to explore extremes of chemical exposure. On the average, the mountain peak was exposed to cloud episodes about 70 percent of experimental days. The lowest pH of cloud water in nearly real-time (~10 min.) samples was 2.4, while that in hourly integrated samples was 2.6. The cloud pH during short cloud events (mean pH 3.1), whjch results from the orographic lifting mechanism, was lower than that during long cloud events (mean pH 3.5), which are associated with mesoscale or synoptic atmospheric disturbances. On the average, the pH values in nonprecipitating cloud events were about 0.4 pH unit lower than those in precipitating cloud events. Sulfate, nitrate, ammonium and hydrogen ions were found to be the major constituents of cloud water, and these accounted for -90 percent of the ionic concentration. Total ionic concentrations were found to be much higher in non-precipitating clouds (670-3,010 μeq/L) than those in precipitating clouds (220-370 μeq/L). At low acidity, ionic balance is sometimes not obtained. It is suggested that organic acids may provide this balance.

The profile of cloud water ionic concentration versus time was frequently observed to show decrease at the beginning and rising toward the end during short cloud events. Before the dissipation of clouds, a decrease in cloud water pH and an increase in ionic concentration were found. At the same time, temperature and solar radiation increased, and relative humidity and microphysical parameters (liquid water content, average droplet size, and droplet concentration) decreased. These observations suggest that evaporative dissipation of cloud droplets leads to acidification of cloud water. Mean pH of cloud water was 3.4 when the prevailing wind was from the northwest direction, and it was 3.9 when the wind was from the west direction. The effects of variations in cloud liquid water content have been separated from variations in pre-cloud pollutant concentrations to determine the relationship between source intensity and cloud water concentrations.  相似文献   
975.
Recent toxicological results highlight the importance of separating exposure to indoor- and outdoor-generated particles, due to their different physicochemical and toxicological properties. In this framework, a number of studies have attempted to estimate the relative contribution of particles of indoor and outdoor origins to indoor concentrations, using either statistical analysis of indoor and outdoor concentration time-series or mass balance equations. The aim of this work is to review and compare the methodologies developed in order to determine the ambient particle infiltration factor (F INF) (i.e., the fraction of ambient particles that enter indoors and remains suspended). The different approaches are grouped into four categories according to their methodological principles: (1) steady-state assumption using the steady-state form of the mass balance equation; (2) dynamic solution of the mass balance equation using complex statistical techniques; (3) experimental studies using conditions that simplify model calculations (e.g., decreasing the number of unknowns); and (4) infiltration surrogates using a particulate matter (PM) constituent with no indoor sources to act as surrogate of indoor PM of outdoor origin. Examination of the various methodologies and results reveals that estimating infiltration parameters is still challenging. The main difficulty lies in the separate calculation of penetration efficiency (P) and deposition rate (k). The values for these two parameters that are reported in the literature vary significantly. Deposition rate presents the widest range of values, both between studies and size fractions. Penetration efficiency seems to be more accurately calculated through the application of dynamic models. Overall, estimates of the infiltration factor generated using dynamic models and infiltration surrogates show good agreement. This is a strong argument in favor of the latter methodology, which is simple and easy to apply when chemical speciation data are available.

Implications: ?Taking into account that increased health risks may be related with ambient particles, a reliable estimation of the main parameters governing ambient particle infiltration indoors may assist towards the development of appropriate regulation and control measures, targeted to specific sources/factors contributing to increased exposures. The overall study of the methodological approaches estimating particle infiltration indoors suggests that dynamic models provide a more complete and realistic picture of ambient particle infiltration indoors, whereas the use of specific PM constituents to act as surrogates of indoor particles of outdoor origin seems also a promising new methodology.  相似文献   
976.
Greenhouse gas (GHG) emissions from concentrated animal feeding operations vary by stage of production and management practices. The objective of this research was to study the effect of two dietary crude protein levels (12 and 16%) fed to beef steers in pens with or without corn stover bedding. Manure characteristics and GHG emissions were measured from feedlot pen surfaces. Sixteen equal-sized feedlot pens (19?×?23 m) were used. Eight were bedded approximately twice a week with corn stover and the remaining eight feedlot pens were not bedded. Angus steers (n = 138) were blocked by live weights (lighter and heavier) with 7 to 10 animals per pen. The trial was a 2?×?2 factorial design with factors of two protein levels and two bedding types (bedding vs. non bedding), with four replicates. The study was conducted from June through September and consisted of four ?28-day periods. Manure from each pen was scrapped once every 28 days and composite manure samples from each pen were collected. Air samples from pen surfaces were sampled in Tedlar bags using a Vac-U-Chamber coupled with a portable wind tunnel and analyzed with a greenhouse gas gas chromatograph within 24 hr of sampling. The manure samples were analyzed for crude protein (CP), total nitrogen (TN), ammonia (NH3), total volatile fatty acid (TVFA), total carbon (TC), total phosphorus (TP), and potassium (K). The air samples were analyzed for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) concentrations. The concentration of TN was significantly higher (p < 0.05) in manure from pens with cattle fed the high protein diets. The volatile fatty acids (VFAs) such as acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids concentrations were similar across both treatments. There were no significant differences in pen surface GHG emissions across manure management and dietary crude protein levels.

Implications: Livestock manure produces odor and emits GHGs (CO2, CH4, and N2O) at different stages of production and management practices that have significant environmental concerns. Thus, it is important to measure GHG contributions from different sources and develop appropriate mitigation strategies for minimizing GHG contribution from livestock production facilities. Two dietary protein levels (12 and 16%) fed to beef steers in pens with or without corn stover bedding were studied. The results indicated that dietary protein levels and bedding vs. no bedding had very little effect on GHG emissions and manure composition under open feedlot conditions in North Dakota climatic conditions and management practices.  相似文献   
977.
Pre-restoration studies typically focus on physical habitat, rather than the food-base that supports aquatic species. However, both food and habitat are necessary to support the species that habitat restoration is frequently aimed at recovering. Here we evaluate if and how the productivity of the food-base that supports fish production is impaired in a dredge-mined floodplain within the Yankee Fork Salmon River (YFSR), Idaho (USA); a site where past restoration has occurred and where more has been proposed to help recover anadromous salmonids. Utilizing an ecosystem approach, we found that the dredged segment had comparable terrestrial leaf and invertebrate inputs, aquatic primary producer biomass, and production of aquatic invertebrates relative to five reference floodplains. Thus, the food-base in the dredged segment did not necessarily appear impaired. On the other hand, we observed that off-channel aquatic habitats were frequently important to productivity in reference floodplains, and the connection of these habitats in the dredged segment via previous restoration increased invertebrate productivity by 58%. However, using a simple bioenergetic model, we estimated that the invertebrate food-base was at least 4× larger than present demand for food by fish in dredged and reference segments. In the context of salmon recovery efforts, this observation questions whether additional food-base productivity provided by further habitat restoration would be warranted in the YFSR. Together, our findings highlight the importance of studies that assess the aquatic food-base, and emphasize the need for more robust ecosystem models that evaluate factors potentially limiting fish populations that are the target of restoration.  相似文献   
978.
Ecosystem restoration in south Florida is a state and national priority centered on the Everglades wetlands. However, urban development pressures affect the restoration potential and remaining habitat functions of the natural undeveloped areas. Land use (LU) planning often focuses at the local level, but a better understanding of the cumulative effects of small projects at the landscape level is needed to support ecosystem restoration and preservation. The South Florida Ecosystem Portfolio Model (SFL EPM) is a regional LU planning tool developed to help stakeholders visualize LU scenario evaluation and improve communication about regional effects of LU decisions. One component of the SFL EPM is ecological value (EV), which is evaluated through modeled ecological criteria related to ecosystem services using metrics for (1) biodiversity potential, (2) threatened and endangered species, (3) rare and unique habitats, (4) landscape pattern and fragmentation, (5) water quality buffer potential, and (6) ecological restoration potential. In this article, we demonstrate the calculation of EV using two case studies: (1) assessing altered EV in the Biscayne Gateway area by comparing 2004 LU to potential LU in 2025 and 2050, and (2) the cumulative impact of adding limestone mines south of Miami. Our analyses spatially convey changing regional EV resulting from conversion of local natural and agricultural areas to urban, industrial, or extractive use. Different simulated local LU scenarios may result in different alterations in calculated regional EV. These case studies demonstrate methods that may facilitate evaluation of potential future LU patterns and incorporate EV into decision making.  相似文献   
979.
Sandy coastlines are sensitive ecosystems where human activities can have considerable negative impacts. In particular, trampling by beach visitors is a disturbance that affects dune vegetation both at the species and community level. In this study we assess the effects of the limitation of human trampling on dune vegetation in a coastal protected area of Central Italy. We compare plant species diversity in two recently fenced sectors with that of an unfenced area (and therefore subject to human trampling) using rarefaction curves and a diversity/dominance approach during a two year study period. Our results indicate that limiting human trampling seems to be a key factor in driving changes in the plant diversity of dune systems. In 2007 the regression lines of species abundance as a function of rank showed steep slopes and high Y-intercept values in all sectors, indicating a comparable level of stress and dominance across the entire study site. On the contrary, in 2009 the regression lines of the two fenced sectors clearly diverge from that of the open sector, showing less steep slopes. This change in the slopes of the tendency lines, evidenced by the diversity/dominance diagrams and related to an increase in species diversity, suggests the recovery of plant communities in the two fences between 2007 and 2009. In general, plant communities subject to trampling tended to be poorer in species and less structured, since only dominant and tolerant plant species persisted. Furthermore, limiting trampling appears to have produced positive changes in the dune vegetation assemblage after a period of only two years. These results are encouraging for the management of coastal dune systems. They highlight how a simple and cost-effective management strategy, based on passive recovery conservation measures (i.e., fence building), can be a quick (1–2 years) and effective method for improving and safeguarding the diversity of dune plant communities.  相似文献   
980.
Community-based collaborative groups involved in public natural resource management are assuming greater roles in planning, project implementation, and monitoring. This entails the capacity of collaborative groups to develop and sustain new organizational structures, processes, and strategies, yet there is a lack of understanding what constitutes collaborative capacity. In this paper, we present a framework for assessing collaborative capacities associated with community-based public forest management in the US. The framework is inductively derived from case study research and observations of 30 federal forest-related collaborative efforts. Categories were cross-referenced with literature on collaboration across a variety of contexts. The framework focuses on six arenas of collaborative action: (1) organizing, (2) learning, (3) deciding, (4) acting, (5) evaluating, and (6) legitimizing. Within each arena are capacities expressed through three levels of social agency: individuals, the collaborative group itself, and participating or external organizations. The framework provides a language and set of organizing principles for understanding and assessing collaborative capacity in the context of community-based public forest management. The framework allows groups to assess what capacities they already have and what more is needed. It also provides a way for organizations supporting collaboratives to target investments in building and sustaining their collaborative capacities. The framework can be used by researchers as a set of independent variables against which to measure collaborative outcomes across a large population of collaborative efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号