首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21650篇
  免费   190篇
  国内免费   169篇
安全科学   463篇
废物处理   1020篇
环保管理   2287篇
综合类   3474篇
基础理论   5980篇
环境理论   7篇
污染及防治   5793篇
评价与监测   1556篇
社会与环境   1329篇
灾害及防治   100篇
  2023年   93篇
  2022年   233篇
  2021年   218篇
  2020年   144篇
  2019年   153篇
  2018年   443篇
  2017年   431篇
  2016年   677篇
  2015年   408篇
  2014年   659篇
  2013年   1563篇
  2012年   1050篇
  2011年   1109篇
  2010年   796篇
  2009年   737篇
  2008年   917篇
  2007年   983篇
  2006年   829篇
  2005年   1000篇
  2004年   1101篇
  2003年   973篇
  2002年   607篇
  2001年   722篇
  2000年   525篇
  1999年   308篇
  1998年   192篇
  1997年   226篇
  1996年   214篇
  1995年   263篇
  1994年   250篇
  1993年   193篇
  1992年   205篇
  1991年   196篇
  1990年   215篇
  1989年   197篇
  1988年   154篇
  1987年   165篇
  1986年   156篇
  1985年   161篇
  1984年   148篇
  1983年   142篇
  1982年   128篇
  1981年   120篇
  1980年   117篇
  1979年   127篇
  1978年   100篇
  1977年   115篇
  1975年   94篇
  1974年   90篇
  1973年   97篇
排序方式: 共有10000条查询结果,搜索用时 687 毫秒
711.
This work investigated the degradation of a natural estrogen (17beta-estradiol) and the removal of estrogenic activity by the ozonation process in three different pHs (3, 7 and 11). A recombinant yeast assay (YES assay) was employed to determine estrogenic activity of the ozonized samples and of the by-products formed during the ozonation. Ozonation was very efficient for the removal of 17beta-estradiol in aqueous solutions. High removals (>99%) were achieved with low ozone dosages in the three different pHs. Several by-products were formed during the ozonation of 17beta-estradiol. However, only a few compounds could be identified and confirmed. Different by-products are formed at different pHs, which is probably due to different chemical pathways and different oxidants (O(3) and OH radical). The by-products formed at pH 11 were 10epsilon-17beta-dihydroxy-1, 4-estradieno-3-one (DEO) and 2-hydroxyestradiol, which were not formed in pH 3. Only testosterone could be observed in pH 3, whereas at pH 7 all three by-products were found. At pH 7 and 11 the applied ozone dosages were not enough to remove all the estrogenicity from samples, even though the 17beta-estradiol residual concentration for these two pHs was lower than at pH 3. Higher estrogenicity was detected at pH 11. An explanation to this fact may be that oxidation via OH radical forms more by-products with estrogenic activity. Probably, the formation of 2-hydroxyestradiol at pHs 7 and 11 is contributing to the residual estrogenicity of samples ozonized at these pHs. In this work, complete removal of estrogenic activity was only obtained at pH 3.  相似文献   
712.
We report the findings of a comparative analysis examining patterns of accumulation and partitioning of the heavy metals copper (Cu), lead (Pb) and zinc (Zn) in mangroves from available field-based studies to date, employing both species level analyses and a phylogenetic approach. Despite mangroves being a taxonomically diverse group, metal accumulation and partitioning for all metals examined were broadly similar across genera and families. Patterns of metal accumulation were also similar regardless of whether species were classified as salt secreting or non-secreting. Metals were accumulated in roots to concentrations similar to those of adjacent sediments with root bio-concentration factors (BCF; ratio of root metal to sediment metal concentration) of 1< or =. Root BCFs were constant across the exposure range for all metals. Metal concentrations in leaves were half that of roots or lower. Essential metals (Cu and Zn; translocation factors (TF; ratio of leaf metal to root metal concentration) of 0.52 and 0.53, and leaf BCFs of 0.47 and 0.51, respectively) showed greater mobility than non-essential metals (Pb; TF of 0.31 and leaf BCF of 0.11). Leaf BCFs for the essential metals Cu and Zn decreased as environmental concentrations increased. The non-essential metal Pb was excluded from leaf tissue regardless of environmental concentrations. Thus mangroves as a group tend to operate as excluder species for non-essential metals and regulators of essential metals. For phytoremediation initiatives, mangrove ecosystems are perhaps best employed as phytostabilisers, potentially aiding in the retention of toxic metals and thereby reducing transport to adjacent estuarine and marine systems.  相似文献   
713.
Bioremediation process on Brazil shoreline   总被引:1,自引:0,他引:1  
GOAL, SCOPE AND BACKGROUND: Bioremediation technique can be considered a promising alternative to clean oil spills using microbial processes to reduce the concentration and/or the toxicity of pollutants. To understand the importance of this work we must know that there is only little research performed to date using bioremediation techniques to clean oil spills in tropical countries. So, the main objective of this work is to analyze the behavior of a laboratory's bioremediation test using nutrients on coastal sediments. METHODS: The bioremediation process is followed through geochemical analysis during the tests. This organic material is analyzed by medium pressure liquid chromatography (MPLC), gas chromatography/flame ionization detection (GC/FID) and gas chromatography/ mass spectrometry. By microbial counting, the number of total bacteria and degrading bacteria is determined during the experiments, in order to confirm the effectiveness of the bioremediation process. The seawater obtained throughout the bioremediation process is analyzed for nutrients grade (phosphate and ammonium ions) and also for its toxicity (Microtox tests) due the presence of hydrocarbons and fertilizer. RESULTS: The results from the geochemical analyses of the oil show a relative decrease in the saturated hydrocarbon fraction that is compensated by a relative enrichment on polar compounds. It's confirmed by the fingerprint evaluation where it is possible to see a complete reduction of the normal alkanes followed by isoprenoids. Seawater analysis done by toxicity and nutrients analysis, such as microbial counting (total and degrading bacteria), confirm the fertilizer effectiveness during the bioremediation process. DISCUSSION: Results from simulating test using NPK, a low-price plant fertilizer, suggest that it's able to stimulate the degradation process. Results from medium pressure liquid chromatography (MPLC), done at two different depths (surface and subsurface), show different behavior during the biodegradation process where the later is seen to be more susceptible to microbial attack. Data from bioremediation unit shows a bigger reduction of the saturated fraction, followed by some smaller reduction of aromatic fractions, compensated by a relative increase from polar compounds (NSO). n-C17/pristane, n-C18/ fitane and pristane/fitane rates show constant values for the unity control, different from bioremediation samples which have a significant reduction, especially on subsurface areas, where a strong fall in the rates, seen to be reduced to zero over twenty days, had occurred during the first ten days. However, sample surfaces are reduced to zero in thirty days of experiments, proving that biodegradation is better on subsurfaces. Gaseous chromatography/mass spectrometry (CG/MS) analysis shows constant values to cyclic biomarker rates and aromatic compounds, suggesting that the biodegradation process is not strong enough to reduce these composites. Microbial analysis shows a reduction on heterotrophic (total bacteria) number from control unit, probably because the bacteria uses the spill oil like carbon source and energy. However, the number increases on bioremediation unit, because it uses NPK like a biostimulator. The hydrocarbonoclastic number isn't enough on the first moment, but it's detected after 30 days and quantified in all units, showing big values especially in bioremediation. Toxicity tests confirm that NPK fertilizer does not intoxicate the shoreline during the application of the bioremediation technique. Some nutrient concentration shows high values of ammonium and phosphate per bioremediation unit, reducing by the end of the experiment. CONCLUSIONS: Results reached the goal, finding a proper nutrient (NPK fertilizer) to stimulate the biodegradation process, growing bacteria responsible for reducing impact-contaminated coast ambient by oil spills. Chemical analysis of oil shows a reduction in the saturated fraction with a relative enrichment in polar composites (NSO) and the aromatic fraction from oil remaining constant. Subsurface samples show more biodegradation than surface samples, probably because the first one has higher humidity. Linear alcanes are more biodegraded than isoprenoids, confirming the biodegradation susceptibility order. Saturated cyclic biomarkers and aromatic compounds show constant behavior maybe because the nutrients or time was not enough for microorganismic attack. Fertilizer does not demonstrate any toxic effects in local biota so that it does not compromise the technique applicability and the environment is not saturated by nutrients during the simulation, especially since the coastal environment is an open system affected daily by tides. Therefore, bioremediation tests can be classified as moderate, reaching level 5 in the classification scale by Peters & Moldowan (1993). RECOMMENDATIONS AND PERSPECTIVES: The use of marine environment by the petroleum industry on exploration, production and transportation operation, transform this oil to become the most important pollutant in the oceans. Bioremediation is an important technique used to clean spilled oil impacting on shorelines, accelerating the biodegradation process by using fertilizer growing the microorganisms responsible for decontaminating the environment. We recommend confirming the efficiency of NPK nutrient used on bioremediation simulating experiments on beaches, while monitoring the chemical changes long-term. NPK fertilizer can be used to stimulate the biodegradation process on shoreline impacted by spilled oil.  相似文献   
714.
Samples of effluents, sludge, pulp, final products (paper) and soil were collected from the identified pulp and paper mills in India. The samples were analysed for 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2,3,7,8-TCDD) and other dioxin congeners and precursors. Pulp and paper mills using chlorine for the bleaching process showed the presence of 2,3,7,8-TCDD in effluent samples. In the effluent and pulp samples from mills where chlorine dioxide was used as a bleaching agent, the 2,3,7,8-TCDD congener ranged from below the detection limit 0.05 to 0.12 ngL−1/ngg−1. The relative standard deviation of reproducibility and the percent recovery of 2,3,7,8-TCDD were 2.07 and 82.4% in pulp and 2.8 and 92% in effluent, respectively. The 1,3,6,8-TCDD was the only other major dioxin congener found in the treated and untreated effluent and sludge samples. However, dichlorobenzene, trichlorophenyl, and hexachlorobiphenyl were detected in all samples. The formation of dioxins can be minimised by replacing chlorine with chlorine dioxide in bleaching processes in pulp and paper mills.  相似文献   
715.
716.
A study of the water quality of the Potrero de los Funes River (San Luis – Argentina) was carried out in order to evaluate the possible effect of the anthropogenic activities on the river developed in the homonymous town. Samples were collected during the period March 2000–November 2005 at three selected sampling sites (RP1, RP2 and RP3). Different physicochemical and bacteriological parameters (turbidity, pH, conductivity, suspended solids, alkalinity, potassium, sodium, calcium, magnesium, chlorides, nitrates, phosphates, sulphates, chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), dissolved oxygen, total coliforms, Escherichia coli and total heterotrophic bacteria) were analysed according to the Standard Method for the Examination of Water and Wastewater. When comparing the values of total coliforms, E. coli, total heterotrophic bacteria, COD, BOD5 and phosphates from the zone without anthropogenic influence (RP1) and the urban zones (RP2 and RP3) an important variation in the parameters was observed. These results indicate that the urban activity produces a serious and negative effect on the water quality, thus constituting a sanitary risk and may have a major impact on the trophic status of the Potrero de los Funes dam. As case study, we report on the use of General Quality Index (GQI) to evaluate spatial and seasonal changes in the water quality of Potrero de los Funes River. Results revealed a significant degradation of the water quality at RP2 and RP3.  相似文献   
717.
718.
Individual specimens of Salmo trutta were captured, from four sampling sites in Galician rivers (NW Spain) affected by different types of contamination: diffuse urban waste, run-off from an unrestored dump at a copper mine and waste from a fish farm. The ages of the captured trouts were established and only those belonging to the 1+ age class were selected for study. The liver and kidney were removed from each fish and analysed to determine the tissue concentrations of Cu, Fe and Zn. The results obtained showed that: (i) the use of 1+ individuals allowed differentiation of contamination scenarios on the basis of the tissue concentrations of metal; (ii) the use of 1+ individuals allowed standardization of the time of exposure, which was sufficiently long for differential uptake to have taken place; (iii) liver tissue provided the best results as, less effort was required than for processing kidney tissue, and significant differences between sampling sites were detected because the intrapopulational variability in metal levels was lower than for kidney, and (iv) the levels of elements detected were not affected by basal tissue concentrations or residual concentrations due to past contamination, which older trouts may have been exposed to. In addition, the use of 1+ trout may provide better results in annual environmental sampling surveys.  相似文献   
719.
Twenty four hours diel cycles of arsenic speciation in Acid Mine Drainage (AMD) due to photooxidation have been reported for the first time. AMD samples were taken during 48 h (31st March and 1st April, 2005) at 6 h intervals from the effluent of a massive abandoned polymetallic sulphide mine of the Iberian Pyrite Belt (Sw Spain). Samples were preserved in situ using cationic exchange prior to analysis by coupled high performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC-HG-AFS) for arsenic speciation. The results indicated the presence of inorganic arsenic species with daily means of 262mugl(-1) for As(V) and 107 microg l(-1) for As(III). No marked diel trend was observed for As(V). However, a marked diel trend was observed for As(III) in the two studied days, with maximum concentrations during nighttime (141-143 microg l(-1)) and minimum concentrations at daytime (72-77 microg l(-1)). This difference in concentration during daytime and nighttime is ca. 100%. A similar diel cycle was observed for iron. An explanation for the arsenic diel cycles observed is the light induced photooxidation of As(III) and the elimination of As(V) due to its adsorption onto Fe precipitates during the daytime. Furthermore, the diel changes in arsenic speciation emphasize the importance of designing suitable sampling strategies in AMD systems.  相似文献   
720.
Sediment characteristics are well known to interfere with toxicity, mainly through differences in terms of bioaccumulation. Here, with chironomids exposed to zinc in an artificial and a field sediment, we investigated the differences of zinc accumulation and of effects on the life cycle, at individual and population level. We used biology and energy-based modeling to analyze the data at all the levels of biological organization. This permits a reliable estimation of thresholds values for tissue residues. Differences in zinc tissue residues accounted for most of the differences between the results for both sediments (a factor of 11 for differences from 20 to 100 depending on the parameter which is considered). Taking into account accumulation and background variability, the differences relative to thresholds could be accounted for. However, it appeared that, once the threshold was passed, effects were much more pronounced for organisms exposed to artificial sediment compared to field sediment. We concluded that some sediment characteristics can enhance toxicity, in addition to their influence on the compound accumulation, even if the latter was the major source of differences in our study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号