首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19084篇
  免费   185篇
  国内免费   144篇
安全科学   449篇
废物处理   899篇
环保管理   2071篇
综合类   2924篇
基础理论   4997篇
环境理论   10篇
污染及防治   5363篇
评价与监测   1406篇
社会与环境   1190篇
灾害及防治   104篇
  2023年   100篇
  2022年   235篇
  2021年   247篇
  2020年   157篇
  2019年   175篇
  2018年   330篇
  2017年   369篇
  2016年   530篇
  2015年   365篇
  2014年   644篇
  2013年   1543篇
  2012年   740篇
  2011年   968篇
  2010年   810篇
  2009年   728篇
  2008年   861篇
  2007年   940篇
  2006年   743篇
  2005年   643篇
  2004年   614篇
  2003年   578篇
  2002年   569篇
  2001年   683篇
  2000年   517篇
  1999年   275篇
  1998年   188篇
  1997年   218篇
  1996年   215篇
  1995年   253篇
  1994年   240篇
  1993年   184篇
  1992年   203篇
  1991年   186篇
  1990年   209篇
  1989年   188篇
  1988年   153篇
  1987年   163篇
  1986年   155篇
  1985年   158篇
  1984年   148篇
  1983年   140篇
  1982年   126篇
  1981年   120篇
  1980年   117篇
  1979年   125篇
  1978年   100篇
  1977年   113篇
  1975年   87篇
  1974年   87篇
  1973年   96篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Background, aim, and scope  The paper describes the spatial contamination of the River Kymijoki, South-Eastern Finland, and the coastal region of the Gulf of Finland with PCDD/Fs and mercury. The findings of ecotoxicologial and human health studies are also reported, including environmental and human risk assessments. Sediments from the River Kymijoki, draining into the Gulf of Finland, have been heavily polluted by the pulp and paper industry and by chemical industries. A wood preservative, known as Ky-5, was manufactured in the upper reaches of the river between 1940 and 1984 causing severe pollution of river sediments with polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF). Moreover, the sediments have been polluted with mercury (Hg) from chlor-alkali production and the use of Hg as a slimicide in pulp and paper manufacturing. Materials and methods  An extensive sediment survey was conducted as well as sediment transport modeling, toxicity screening of sediment invertebrates, and a survey of contaminant bioaccumulation in invertebrates and fish. Studies on human exposure to PCDD/Fs and the possible effects on hypermineralization of teeth as well as an epidemiological study to reveal increased cancer risk were also conducted. An assessment of the ecological and human health risks with a null hypothesis (no remediation) was undertaken. Results  The sediment survey revealed severe contamination of river and coastal sediments with PCDD/Fs and Hg. The total volume of contaminated sediments was estimated to reach 5 × 106 m3 and hot spots with extremely high concentrations (max 292,000 ng g−1 or 1,060 ng I-TEQ g−1 d.w.) were located immediately downstream from the pollution source (approximately 90,000 m3). Sediment contamination was accompanied by changes in benthic assemblages, but direct effects were masked by many factors. The fish showed only slightly elevated PCDD/F levels in muscle, but orders of magnitude higher in the liver compared with reference freshwater sites and the Baltic Sea. The concentrations in human fat did not reveal high human exposure in the Kymijoki area in general and was lower than in sea fishermen. The relative risk for total cancer among farmers was marginally higher (RR = 1.13) among those living close to the river, compared with farmers living further away, and the possibility of increased cancer risk cannot be ruled out. A conservative risk assessment revealed that the present probability of exceeding the WHO upper exposure limit of 4 pg WHO-TEQ kg−1 d−1 for PCDD/Fs and DL-PCBs was 6%. The probability of exceeding the WHO limit value of 0.23 μg kg−1 d−1 for methyl mercury was estimated to be notably higher at 62%. Based on these studies and the estimated risks connected with different remediation techniques a general remediation plan with cost benefit analysis was generated for several sub-regions in the river. Dredging, on-site treatment, and a close disposal of the most contaminated sediments (90,000 m3) was suggested as the first phase of the remediation. The decision regarding the start of remediation will be made during autumn 2008. Conclusions  The sediments in the River Kymijoki are heavily polluted with PCDD/Fs and mercury from earlier chlorophenol, chlor-alkali, and pulp and paper manufacturing. A continuous transport of contaminants is taking place to the Gulf of Finland in the Baltic Sea. The highly increased PCDD/F and Hg levels in river sediments pose an ecotoxicological risk to benthic fauna, to fish-eating predators and probably to human health. The risks posed by mercury exceed those from PCDD/Fs and need to be evaluated for (former) chlor-alkali sites and other mercury releasing industries as one basis for remediation decision making. Recommendations and perspectives  The studies form the basis of a risk management strategy and a plan for possible remediation of contaminated sediments currently under consideration in the Southeast Finland Regional Environment Centre. It is recommended that a detailed restoration plan for the most seriously contaminated areas should be undertaken. Based on current knowledge, the restoration of the whole river is not feasible, considering the current risk caused by the contaminated sediment in the river and the costs of an extensive restoration project. The experiences gained in the present case should be utilized in the evaluation of PCDD/F- and mercury-contaminated sites in other countries. The case demonstrates that the historic reservoirs are of contemporary relevance and should be addressed, e.g., in the national implementation plans of the Stockholm Convention. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
992.
Background, aim, and scope  Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70–290 μm) and mesoplankton (≥290 μm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Materials and methods  Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Results and discussion  Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 μg g−1 dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g−1) than in Micropogonias furnieri (2.9 and 15.3 nmol g−1), Bagre spp (1.3 and 3.4 nmol g−1) and Mugil liza (0.3 and 5.1 nmol g−1), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Conclusions  Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. Recommendations and perspectives  There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.  相似文献   
993.
Spatial gradients of vehicular emitted air pollutants were measured in the vicinity of three roadways in the Austin, Texas area: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway with significant truck traffic. A mobile monitoring platform was used to characterize the gradients of CO and NOx concentrations with increased distance from each roadway, while concentrations of carbonyls in the gas-phase and fine particulate matter mass and composition were measured at stationary sites upwind and at one (I-35 and FM-973) or two (SH-71) downwind sites. Regardless of roadway type or wind direction, concentrations of carbon monoxide (CO), nitric oxide (NO), and oxides of nitrogen (NOx) returned to background levels within a few hundred meters of the roadway. Under perpendicular wind conditions, CO, NO and NOx concentrations decreased exponentially with increasing distance perpendicular to the roadways. The decay rate for NO was more than a factor of two greater than for CO, and it comprised a larger fraction of NOx closer to the roadways than further downwind suggesting the potential significance of near roadway chemical processing as well as atmospheric dilution. Concentrations of most carbonyl species decreased with distance downwind of SH-71. However, concentrations of acetaldehyde and acrolein increased farther downwind of SH-71, suggesting chemical generation from the oxidation of primary vehicular emissions. The behavior of particle-bound organic species was complex and further investigation of the size-segregated chemical composition of particulate matter (PM) at increasing downwind distances from roadways is warranted. Fine particulate matter (PM2.5) mass concentrations, polycyclic aromatic hydrocarbons (PAHs), hopanes, and elemental carbon (EC) concentrations generally exhibited concentrations that decreased with distance downwind of SH-71. Concentrations of organic carbon (OC) increased from upwind concentrations immediately downwind of SH-71 and continued to increase further downwind from the roadway. This behavior may have primarily resulted from condensation of semi-volatile organic species emitted from vehicle sources with transport downwind of the roadway.  相似文献   
994.
The boundary between preferential flow and Richards-type flow is a priori set at a volumetric soil water content θ at which soil water diffusivity D (θ) = η (= 10− 6 m2 s− 1), where η is the kinematic viscosity. First we estimated with a hydrostatic approach from soil water retention curves the boundary, θK, between the structural pore domain, in which preferential flow occurs, and the matrix pore domain, in which Richards-type flow occurs. We then compared θK with θ that was derived from the respective soil hydrological property functions of same soil sample. Second, from in situ investigations we determined 96 values of θG as the terminal soil water contents that established themselves when the corresponding water-content waves of preferential flow have practically ceased. We compared the frequency distribution of θG with the one of θ that was calculated from the respective soil hydrological property functions of 32 soil samples that were determined with pressure plate apparatuses in the laboratory. There is support of the notion that θK θ≈ θ, thus indicating the potential of θ to explain more generally what constitutes preferential flow. However, the support is assessed as working hypothesis on which to base further research rather than a procedure to a clear-cut identification of preferential flow and associated flow paths.  相似文献   
995.
The production of N2 gas by denitrification may lead to the appearance of a gas phase below the water table prohibiting the conservative transport of tracer gases required for groundwater dating. We used a two-phase flow and transport model (STOMP) to study the reliability of 3H/3He, CFCs and SF6 as groundwater age tracers under agricultural land where denitrification causes degassing. We were able to reproduce the amount of degassing (R2 = 69%), as well as the 3H (R2 = 79%) and 3He (R2 = 76%) concentrations observed in a 3H/3He data set using simple 2D models. We found that the TDG correction of the 3H/3He age overestimated the control 3He/3He age by 2.1 years, due to the accumulation of 3He in the gas phase. The total uncertainty of degassed 3H/3He ages of 6 years (± 2 σ) is due to the correction of degassed 3He using the TDG method, but also due to the travel time in the unsaturated zone and the diffusion of bomb peak 3He. CFCs appear to be subject to significant degradation in anoxic groundwater and SF6 is highly susceptible to degassing. We conclude that 3H/3He is the most reliable method to date degassed groundwater and that two-phase flow models such as STOMP are useful tools to assist in the interpretation of degassed groundwater age tracer data.  相似文献   
996.
Silver, both in the nano as well as in other forms, is used in many applications including antimicrobial textiles. Washing of such textiles has already been identified as an important process that results in the release of silver into wastewater. This study thus investigated the release of silver from eight different commercially available silver-textiles during a washing and rinsing cycle. The silver released was size-fractionated and characterized using electron microscopy. In addition, the antimicrobial functionality of the textiles was tested before and after washing. Three of the textiles contained nanosized silver (labeled or confirmed by manufacturers’ information), another used a metallic silver wire and four contained silver in undeclared form. The initial silver content of the textiles was between 1.5 and 2925 mg Ag/kg. Only four of the investigated textiles leached detectable amounts of silver, of which 34-80% was in the form of particles larger than 450 nm. Microscopic analysis of the particles released in the washing solutions identified Ti/Si-AgCl nanocomposites, AgCl nanoparticles, large AgCl particles, nanosilver sulfide and metallic nano-Ag, respectively. The nanoparticles were mainly found in highly agglomerated form. The identified nanotextiles showed the highest antimicrobial activity, whereas some of the other textiles, e.g. the one with a silver wire and the one with the lowest silver content, did not reduce the growth of bacteria at all. The results show that different silver textiles release different forms of silver during washing and that among the textiles investigated AgCl was the most frequently observed chemical form in the washwater.  相似文献   
997.
We evaluated the exposure to pesticides from the consumption of passion fruits and subsequent human health risks by combining several methods: (i) experimental field studies including the determination of pesticide residues in/on passion fruits, (ii) dynamic plant uptake modelling, and (iii) human health risk assessment concepts. Eight commonly used pesticides were applied onto passion fruits cultivated in Colombia. Pesticide concentrations were measured periodically (between application and harvest) in whole fruits and fruit pulp. Measured concentrations were compared with predicted residues calculated with a dynamic and crop-specific pesticide uptake model, namely dynamiCROP. The model accounts for the time between pesticide application and harvest, the time between harvest and consumption, the amount of spray deposition on plant surfaces, uptake processes, dilution due to crop growth, degradation in plant components, and reduction due to food processing (peeling). Measured and modelled residues correspond well (r2 = 0.88-0.99), with all predictions falling within the 90% confidence interval of the measured values. A mean error of 43% over all studied pesticides was observed between model estimates and measurements. The fraction of pesticide applied during cultivation that is eventually ingested by humans is on average 10−4-10−6, depending on the time period between application and ingestion and the processing step considered. Model calculations and intake fractions via fruit consumption based on experimental data corresponded well for all pesticides with a deviation of less than a factor of 2. Pesticide residues in fruits measured at recommended harvest dates were all below European Maximum Residue Limits (MRLs) and therefore do not indicate any violation of international regulatory thresholds.  相似文献   
998.
Convenient to apply and available on the Internet software CORAL (http://www.insilico.eu/CORAL) has been used to build up quantitative structure-activity relationships (QSAR) for prediction of cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli (minus logarithm of concentration for 50% effect pEC50). In this study six random splits of the data into the training and test set were examined. It has been shown that the CORAL provides a reliable tool that could be used to build up a QSAR of the pEC50.  相似文献   
999.
Biotransformation studies of atrazine, metolachlor and evolution of their metabolites were carried out in soils and subsoils of Northern Greece. Trace atrazine, its metabolites and metolachlor residues were detected in field soil samples 1 year after their application. The biotransformation rates of atrazine were higher in soils and subsoils of field previously exposed to atrazine (maize field sites) than in respective layers of the field margin. The DT50 values of atrazine ranged from 5 to 18 d in the surface layers of the adapted soils. DT50 values of atrazine increased as the soil depth increased reaching the value of 43 d in the 80-110 cm depth layer of adapted soils. Metolachlor degraded at slower rates than atrazine in surface soils, subsoils of field and field margins with the respective DT50 values ranging from 56 to 72 d in surface soils and from 165 to 186 d in subsoils. Hydroxyatrazine was the most frequently detected metabolite of atrazine. The maximum concentrations of metolachlor-OXA and metolachlor-ESA were detected in the soil layers of 20-40 cm depth after 90 d of incubation. Principal Component Analysis (PCA) of soil Phospholipid Fatty Acids (PLFAs), fungal/bacterial and Gram-negative/Gram-positive ratios of the PLFA profiles revealed that the higher biotransformation rates of atrazine were simultaneously observed with the abundance of Gram-negative bacteria while the respective rates of metolachlor were observed in soil samples with abundance of fungi.  相似文献   
1000.
Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号