首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   17篇
  国内免费   1篇
安全科学   12篇
废物处理   11篇
环保管理   53篇
综合类   18篇
基础理论   72篇
环境理论   1篇
污染及防治   58篇
评价与监测   9篇
社会与环境   8篇
灾害及防治   17篇
  2021年   2篇
  2020年   2篇
  2019年   8篇
  2018年   9篇
  2017年   6篇
  2016年   10篇
  2015年   11篇
  2014年   4篇
  2013年   26篇
  2012年   11篇
  2011年   12篇
  2010年   6篇
  2009年   4篇
  2008年   5篇
  2007年   18篇
  2006年   5篇
  2005年   11篇
  2004年   9篇
  2003年   6篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1993年   7篇
  1991年   2篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1976年   1篇
  1975年   4篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1958年   1篇
  1956年   1篇
排序方式: 共有259条查询结果,搜索用时 0 毫秒
71.
72.
Plants engage in multiple, simultaneous interactions with other species; some (enemies) reduce and others (mutualists) enhance plant performance. Moreover, effects of different species may not be independent of one another; for example, enemies may compete, reducing their negative impact on a plant. The magnitudes of positive and negative effects, as well as the frequency of interactive effects and whether they tend to enhance or depress plant performance, have never been comprehensively assessed across the many published studies on plant-enemy and plant-mutualist interactions. We performed a meta-analysis of experiments in which two enemies, two mutualists, or an enemy and a mutualist were manipulated factorially. Specifically, we performed a factorial meta-analysis using the log response ratio. We found that the magnitude of (negative) enemy effects was greater than that of (positive) mutualist effects in isolation, but in the presence of other species, the two effects were of comparable magnitude. Hence studies evaluating single-species effects of mutualists may underestimate the true effects found in natural settings, where multiple interactions are the norm and indirect effects are possible. Enemies did not on average influence the effects on plant performance of other enemies, nor did mutualists influence the effects of mutualists. However, these averages mask significant and large, but positive or negative, interactions in individual studies. In contrast, mutualists ameliorated the negative effects of enemies in a manner that benefited plants; this overall effect was driven by interactions between pathogens and belowground mutualists (bacteria and mycorrhizal fungi). The high frequency of significant interactive effects suggests a widespread potential for diffuse rather than pairwise coevolutionary interactions between plants and their enemies and mutualists. Pollinators and mycorrhizal fungi enhanced plant performance more than did bacterial mutualists. In the greenhouse (but not the field), pathogens reduced plant performance more than did herbivores, pathogens were more damaging to herbaceous than to woody plants, and herbivores were more damaging to crop than to non-crop plants (suggesting evolutionary change in plants or herbivores following crop domestication). We discuss how observed differences in effect size might be confounded with methodological differences among studies.  相似文献   
73.
74.
An innovative but simple analytical modeling tool for reconstructing contaminant concentration versus time trends (i.e., “source history”) for a site using high‐resolution contaminant profiles from low permeability (low‐k) zones was developed and tested. Migration of contaminants into low‐k zones via diffusion (and possibly slow advection) produce concentration versus depth profiles that can be used to understand temporal concentration trends at the interface with overlying transmissive zones, including evidence of attenuation over time due to source decay. A simple transport‐based spreadsheet tool for generating source history estimates fit to the profiles was developed and applied to published soil concentration versus depth data from five distinct areas of four different sites contaminated with chlorinated ethenes. Using the root mean square error as an optimization metric, strong fits between measured and model‐predicted soil data were obtained in the majority of cases using site‐specific values for input parameters. In general, significant improvements could not be obtained by varying these parameters. As a result, the source history estimates generated by the tool were similar to those that had already been generated using more intensive analytical or numerical inverse modeling approaches. This included confirmation of constant source histories at locations where dense nonaqueous‐phase liquid was present (or suspected to be present), and declining source histories for locations where source isolation and/or attenuation had occurred. The advantage of the modeling tool described here is that it provides a simpler yet more dynamic method for understanding source behavior over time than existing approaches. ©2015 Wiley Periodicals, Inc.  相似文献   
75.
76.
We update the Wigington et al. (2013) hydrologic landscape (HL) approach to make it more broadly applicable and apply the revised approach to the Pacific Northwest (PNW; i.e., Oregon, Washington, and Idaho). Specific changes incorporated are the use of assessment units based on National Hydrography Dataset Plus V2 catchments, a modified snowmelt model validated over a broader area, an aquifer permeability index that does not require preexisting aquifer permeability maps, and aquifer and soil permeability classes based on uniform criteria. Comparison of Oregon results for the revised and original approaches found fewer and larger assessment units, loss of summer seasonality, and changes in rankings and proportions of aquifer and soil permeability classes. Differences could be explained by three factors: an increased assessment unit size, a reduced number of permeability classes, and use of smaller cutoff values for the permeability classes. The distributions of the revised HLs in five groups of Oregon rivers were similar to the original HLs but less variable. The improvements reported here should allow the revised HL approach to be applied more often in situations requiring hydrologic classification and allow greater confidence in results. We also apply the map results to the development of hydrologic landscape regions.  相似文献   
77.
ABSTRACT: The Gunnison River in the Gunnison Gorge is a canyon river where upstream dams regulate mainstem discharge but do not affect debris-flow sediment supply from tributaries entering below the reservoirs. Regulation since 1966 has altered flood frequency, streambed mobility, and fluvial geomorphology creating potential resource-management issues. The duration of moderate streamflows between 32.3 and 85.0 m3/s has increased threefold since 1966. This, along with flood-peak attenuation, has facilitated fine-sediment deposition and vegetation encroachment on stream banks. The Shields equation and on-site channel geometry and bed-material measurements were used to assess changes in sediment entrainment in four alluvial reaches. Sand and fine gravel are transported through riffle/pool reaches at most discharges, but the cobbles and boulders composing the streambed in many reaches now are infrequently entrained. Periodic debris flows add coarse sediment to rapids and can increase pool elevation and the streambed area affected by backwater and fine-sediment accumulation. Debris-flow supplied boulders accumulate on fans and in rapids and constrict the channel until reworked by larger floods. The response to streamflow-régime changes in the Gunnison Gorge could serve as an analog for alluvial reaches in other regulated canyon rivers.  相似文献   
78.
Abstract

Local Agenda 21 (LA21) has emerged as the principal means of addressing sustainable development practice at the local government level. In the UK, progressive local authorities have emphasised the need for participatory processes and innovative policy options. This requires commitment and active involvement from a variety of individuals and organisations. Participants in LA21 have been interviewed to determine their motivations and perceptions, and their responses are represented in terms of the storylines of various constituencies of interest. The key themes seem to be those of actively promoting widespread participation, gaining competence in innovative techniques, taking a holistic approach to quality of life concerns, and claiming the legitimacy of local government as a key player in sustainable development.  相似文献   
79.
Connectivity is a fundamental but highly dynamic property of watersheds. Variability in the types and degrees of aquatic ecosystem connectivity presents challenges for researchers and managers seeking to accurately quantify its effects on critical hydrologic, biogeochemical, and biological processes. However, protecting natural gradients of connectivity is key to protecting the range of ecosystem services that aquatic ecosystems provide. In this featured collection, we review the available evidence on connections and functions by which streams and wetlands affect the integrity of downstream waters such as large rivers, lakes, reservoirs, and estuaries. The reviews in this collection focus on the types of waters whose protections under the U.S. Clean Water Act have been called into question by U.S. Supreme Court cases. We synthesize 40+ years of research on longitudinal, lateral, and vertical fluxes of energy, material, and biota between aquatic ecosystems included within the Act's frame of reference. Many questions about the roles of streams and wetlands in sustaining downstream water integrity can be answered from currently available literature, and emerging research is rapidly closing data gaps with exciting new insights into aquatic connectivity and function at local, watershed, and regional scales. Synthesis of foundational and emerging research is needed to support science‐based efforts to provide safe, reliable sources of fresh water for present and future generations.  相似文献   
80.
We implement a spatially lumped hydrologic model to predict daily streamflow at 88 catchments within the state of Oregon and analyze its performance using the Oregon Hydrologic Landscape (OHL) classification. OHL is used to identify the physio‐climatic conditions that favor high (or low) streamflow predictability. High prediction catchments (Nash‐Sutcliffe efficiency of (NS) > 0.75) are mainly classified as rain dominated with very wet climate, low aquifer permeability, and low to medium soil permeability. Most of them are located west of the Cascade Mountain Range. Conversely, most low prediction catchments (NS < 0.6) are classified as snow‐dominated with high aquifer permeability and medium to high soil permeability. They are mainly located in the volcano‐influenced High Cascades region. Using a subset of 36 catchments, we further test if class‐specific model parameters can be developed to predict at ungauged catchments. In most catchments, OHL class‐specific parameters provide predictions that are on par with individually calibrated parameters (NS decline < 10%). However, large NS declines are observed in OHL classes where predictability is not high enough. Results suggest higher uncertainty in rain‐to‐snow transition of precipitation phase and external gains/losses of deep groundwater are major factors for low prediction in Oregon. Moreover, regionalized estimation of model parameters is more useful in regions where conditions favor good streamflow predictability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号