首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   877篇
  免费   13篇
  国内免费   12篇
安全科学   37篇
废物处理   46篇
环保管理   144篇
综合类   143篇
基础理论   179篇
污染及防治   228篇
评价与监测   86篇
社会与环境   36篇
灾害及防治   3篇
  2023年   7篇
  2022年   20篇
  2021年   18篇
  2020年   15篇
  2019年   13篇
  2018年   19篇
  2017年   26篇
  2016年   38篇
  2015年   26篇
  2014年   47篇
  2013年   69篇
  2012年   59篇
  2011年   71篇
  2010年   42篇
  2009年   38篇
  2008年   57篇
  2007年   43篇
  2006年   50篇
  2005年   34篇
  2004年   34篇
  2003年   29篇
  2002年   23篇
  2001年   6篇
  2000年   9篇
  1999年   7篇
  1998年   6篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   8篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   7篇
  1985年   7篇
  1984年   5篇
  1983年   8篇
  1982年   8篇
  1981年   8篇
  1978年   3篇
  1977年   2篇
  1975年   1篇
  1963年   1篇
  1955年   1篇
排序方式: 共有902条查询结果,搜索用时 93 毫秒
161.
This paper presents an economic study of a novel thermal fry-drying technology which transforms sewage sludge and recycled cooking oil (RCO) into a solid fuel. The process is shown to have significant potential advantage in terms of capital costs (by factors of several times) and comparable operating costs. Three potential variants of the process have been simulated and costed in terms of both capital and operating requirements for a commercial scale of operation. The differences are in the energy recovery systems, which include a simple condensation of the evaporated water and two different heat pump configurations. Simple condensation provides the simplest process, but the energy efficiency gain of an open heat pump offset this, making it economically somewhat more attractive. In terms of operating costs, current sludge dryers are dominated by maintenance and energy requirements, while for fry-drying these are comparatively small. Fry-drying running costs are dominated by provision of makeup waste oil. Cost reduction could focus on cheaper waste oil, e.g. from grease trap waste.  相似文献   
162.
A study of the water quality of the Potrero de los Funes River (San Luis – Argentina) was carried out in order to evaluate the possible effect of the anthropogenic activities on the river developed in the homonymous town. Samples were collected during the period March 2000–November 2005 at three selected sampling sites (RP1, RP2 and RP3). Different physicochemical and bacteriological parameters (turbidity, pH, conductivity, suspended solids, alkalinity, potassium, sodium, calcium, magnesium, chlorides, nitrates, phosphates, sulphates, chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), dissolved oxygen, total coliforms, Escherichia coli and total heterotrophic bacteria) were analysed according to the Standard Method for the Examination of Water and Wastewater. When comparing the values of total coliforms, E. coli, total heterotrophic bacteria, COD, BOD5 and phosphates from the zone without anthropogenic influence (RP1) and the urban zones (RP2 and RP3) an important variation in the parameters was observed. These results indicate that the urban activity produces a serious and negative effect on the water quality, thus constituting a sanitary risk and may have a major impact on the trophic status of the Potrero de los Funes dam. As case study, we report on the use of General Quality Index (GQI) to evaluate spatial and seasonal changes in the water quality of Potrero de los Funes River. Results revealed a significant degradation of the water quality at RP2 and RP3.  相似文献   
163.
Six different species of lichens (Parmelia sulcata Tayl., Evernia prunastri (L.) Ach., Ramalina farinacea, Pseudevernia furfuracea (L.) Zopf., Usnea sp. and Lobaria pulmonaria (Schreb.) Hoffm.) were collected in two mountain valleys in Central Pyrenees: the Aspe and Aragon valleys. Two multivariate techniques have been applied with different purposes, ANOVA and Discriminant Analysis (DA), to evaluate the data. The PAHs spatial distribution was studied in the three more abundant and widespread species in the area: P. sulcata, E. prunastri (L.) Ach. and R. farinacea in terms of total PAHs, PAHs related to the combustion processes and toxicity. Different behaviour of each lichen species to trap PAHs was found, being P. sulcata the best one to monitor the most persistent PAHs of pyrogenic origin and E. prunastri the most appropriate to provide information about pyrogenic and petrogenic PAHs. Traffic was the most relevant influence in PAHs bioaccumulation in lichen species.  相似文献   
164.
Phytoremediation of polyaromatic hydrocarbons, anilines and phenols   总被引:12,自引:0,他引:12  
Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottle-necks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health. Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed. In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an increasing tendency to oxidant stress. Pollutant tolerance seems to correlate with the ability to deposit large quantities of pollutant metabolites in the 'bound' residue fraction of plant cell walls compared to the vacuole. In this regard, particular attention is paid to the activities of peroxidases, laccases, cytochromes P450, glucosyltransferases and ABC transporters. However, despite the seemingly large diversity of these proteins, direct proof of their participation in the metabolism of industrial aromatic pollutants is surprisingly scarce and little is known about their control in the overall metabolic scheme. Little is known about the bioavailability of bound metabolites; however, there may be a need to prevent their movement into wildlife food chains. In this regard, the application to harvested plants of composting techniques based on the degradative capacity of white-rot fungi merits attention.  相似文献   
165.
The composition of persistent organochlorine compounds (OC) in soils and sediments from two high altitude European mountain lakes, Redon in the Pyrenees and Ladove in the Tatra mountains, has been studied. Sediment cores from two additional lakes in the Tatra mountains, Starolesnianske Pleso and Dlugi Staw, have also been examined. DDTs (1.7-13 ng g(-1)) were the most abundant OC in soils followed by total polychlorobiphenyls (PCBs; 0.41-1.5 ng g(-1)) and hexachlorobenzene (HCB; 0.15-0.91 ng g(-1)). In sediments, the dominant OC were also DDTs (3.3-28 ng g(-1)) and PCBs (2.3-15 ng g(-1)). These concentrations are low, involving absence of major pollution sources in these high mountain regions. The downcore OC profiles in soils and sediments were similar but higher concentrations and steeper vertical gradients were observed in the latter. Radiometric determinations showed absence of significant OC transport from catchment to lake. The sediment-soil difference points therefore to a better retention of the OC load in sediments than soils which may be related to the low temperatures that are currently encountered at the bottom of the lake water column and the depletion of sediment bioturbation in these cold environments. Significant qualitative changes in the soil PCB distributions are observed downcore. These involve a dominance of the high molecular weight congeners in the top core sections and those of lower weight (i.e. less chlorinated) in the bottom. Anaerobic dechlorination of higher molecular weight congeners occurring in microsites, e.g. as observed in flooded or poorly drained soils, could be responsible for these changes. This process could be concurrent to bioturbation.  相似文献   
166.
This work reviews strategies for the management of municipal solid waste incineration (MSWI) residues, particularly solid particles collected from flue gases. These tiny particles may be retained by different equipment, with or without additives (lime, activated carbon, etc.), and depending on the different possible combinations, their properties may vary. In industrial plants, the most commonly used equipment for heat recovery and the cleaning of gas emissions are: heat recovery devices (boiler, superheater and economiser); dry, semidry or wet scrubbers; electrostatic precipitators; bag filters; fabric filters, and cyclones. In accordance with the stringent regulations in force in developed countries, these residues are considered hazardous, and therefore must be treated before being disposed of in landfills. Nowadays, research is being conducted into specific applications for these residues in order to prevent landfill practices. There are basically two possible ways of handling these residues: landfill after adequate treatment or recycling as a secondary material. The different types of treatment may be grouped into three categories: separation processes, solidification/stabilization, and thermal methods. These residues generally have limited applications, mainly due to the fact that they tend to contain large quantities of soluble salts (NaCl, KCl, calcium compounds), significant amounts of toxic heavy metals (Pb, Zn, Cr, Cu, Ni, Cd) in forms that may easily leach out, and trace quantities of very toxic organic compounds (dioxin, furans). The most promising materials for recycling this residue are ceramics and glass-ceramic materials. The main purpose of the present paper is to review the published literature in this field. A range of studies have been summarized in a series of tables focusing upon management strategies used in various countries, waste composition, treatment processes and possible applications.  相似文献   
167.
Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream‐discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use‐land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long‐term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.  相似文献   
168.
The Storm Water Management Model was used to simulate runoff and nutrient export from a low impact development (LID) watershed and a watershed using traditional runoff controls. Predictions were compared to observed values. Uncalibrated simulations underpredicted weekly runoff volume and average peak flow rates from the multiple subcatchment LID watershed by over 80%; the single subcatchment traditional watershed had better predictions. Saturated hydraulic conductivity, Manning's n for swales, and initial soil moisture deficit were sensitive parameters. After calibration, prediction of total weekly runoff volume for the LID and traditional watersheds improved to within 12 and 5% of observed values, respectively. For the validation period, predicted total weekly runoff volumes for the LID and traditional watersheds were within 6 and 2% of observed values, respectively. Water quality simulation was less successful, Nash–Sutcliffe coefficients >0.5 for both calibration and validation periods were only achieved for prediction of total nitrogen export from the LID watershed. Simulation of a 100‐year, 24‐h storm resulted in a runoff coefficient of 0.46 for the LID watershed and 0.59 for the traditional watershed. Results suggest either calibration is needed to improve predictions for LID watersheds or expanded look‐up tables for Green–Ampt infiltration parameter values that account for compaction of urban soil and antecedent conditions are needed.  相似文献   
169.
Exposure to lead (Pb) may affect adversely human health. Mapping soil Pb contents is essential to obtain a quantitative estimate of potential risk of Pb contamination. The main aim of this paper was to determine the soil Pb concentrations in the urban and peri-urban area of Cosenza–Rende to map their spatial distribution and assess the probability that soil Pb concentration exceeds a critical threshold that might cause concern for human health. Samples were collected at 149 locations from residual and non-residual topsoil in gardens, parks, flower-beds, and agricultural fields. Fine earth fraction of soil samples was analyzed by X-ray Fluorescence spectrometry. Stochastic images generated by the sequential Gaussian simulation were jointly combined to calculate the probability of exceeding the critical threshold that could be used to delineate the potentially risky areas. Results showed areas in which Pb concentration values were higher to the Italian regulatory values. These polluted areas were quite large and likely, they could create a significant health risk for human beings and vegetation in the near future. The results demonstrated that the proposed approach can be used to study soil contamination to produce geochemical maps, and identify hot-spot areas for soil Pb concentration.  相似文献   
170.
Phosphates for Pb immobilization in soils: a review   总被引:9,自引:0,他引:9  
In its soluble ionic forms, lead (Pb) is a toxic element occurring in waters and soils mainly as the result of human activities. The bioavailability of lead ions can be decreased by complexation with various materials in order to decrease their toxicity. Pb chemical immobilization using phosphate addition is a widely accepted technique to immobilize Pb from aqueous solution and contaminated soils. The application of different P amendments cause Pb in soils to shift from forms with high availability to the most strongly bound Pb fractions. The increase of Pb in the residual or insoluble fraction results from formation of pyromorphite Pb5(PO4)3X where X = F, Cl, Br, OH, the most stable environmental Pb compounds under a wide range of pH and Eh natural conditions. Accidental pyromorphite ingestion does not yield bioavailable lead, because pyromorphite is insoluble in the intestinal tract. Numerous natural and synthetic phosphates materials have been used to immobilize Pb: apatite and hydroxyapatite, biological apatite, rock phosphate, soluble phosphate fertilizers such as monoammonium phosphate, diammonium phosphate, phosphoric acid, biosolids rich in P, phosphatic clay and mixtures. The identification of pyromorphite in phosphate amended soils has been carried out by different non destructive techniques such as X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray absorption fine structure, transmission electron microscopy and electron microprobe analysis. The effectiveness of in situ Pb immobilization has also been evaluated by selective sequential extraction, by the toxicity leaching procedure and by a physiologically based extraction procedure simulating metal ingestion and gastrointestinal bioavailability to humans. Efficient Pb immobilization using P amendments requires increasing the solubility of the phosphate phase and of the Pb species phase by inducing acid conditions. Although phosphorus addition seems to be highly effective, excess P in soil and its potential effect on eutrophication of surface water, and the possibility of As enhanced leaching remains a concern. The use of mixed treatments may be a useful strategy to improve their effectiveness in reducing lead phyto- and bioavailability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号