首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   787篇
  免费   24篇
  国内免费   6篇
安全科学   27篇
废物处理   34篇
环保管理   161篇
综合类   82篇
基础理论   219篇
环境理论   2篇
污染及防治   174篇
评价与监测   56篇
社会与环境   52篇
灾害及防治   10篇
  2023年   6篇
  2022年   9篇
  2021年   14篇
  2020年   11篇
  2019年   19篇
  2018年   34篇
  2017年   23篇
  2016年   30篇
  2015年   24篇
  2014年   25篇
  2013年   68篇
  2012年   38篇
  2011年   61篇
  2010年   32篇
  2009年   33篇
  2008年   40篇
  2007年   51篇
  2006年   31篇
  2005年   40篇
  2004年   26篇
  2003年   35篇
  2002年   23篇
  2001年   8篇
  2000年   8篇
  1999年   8篇
  1998年   8篇
  1997年   9篇
  1996年   9篇
  1995年   10篇
  1994年   11篇
  1993年   7篇
  1992年   7篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   8篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有817条查询结果,搜索用时 15 毫秒
221.
Rain gardens, also known as bioretention cells, are low‐impact developments designed to mitigate several problems associated with urban stormwater. This four‐month field study involved a rain garden at a wastewater treatment plant in north‐central Texas in the United States of America. Partially treated wastewater from an anaerobic digester spilled into the rain garden at the beginning of the study. Subsequently, inflow and outflow concentrations of nitrogen and phosphorus were measured for nine simulated floods, preceded by dry‐spell intervals of 5, 8, or 12 days. Despite large inputs from the wastewater spill, the rain garden gradually processed and flushed the nitrogen. Longer dry spells tended to produce relatively higher outflow nitrate concentrations. A large pool of phosphorus in the soil restricted the rain garden's ability to reduce outflow orthophosphate concentrations, which were stable and lower than inflow concentrations throughout the study; however, adsorptive processes attenuated a relatively high inflow concentration by the end of the study.  相似文献   
222.
223.
The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition.  相似文献   
224.
The geographical distribution of hexabromocyclododecane (HBCD) was investigated through analysis of muscle tissue of skipjack tuna (Katsuwonus pelamis) collected from offshore waters of Asia-Pacific region (Japan, Taiwan, Philippines, Indonesia, Seychelles, Brazil, Japan Sea, East China Sea, South China Sea, Indian Ocean and North Pacific Ocean). HBCD was detected in almost all samples analyzed (<0.1 to 45 ng/g lipid weight basis), indicating widespread presence of this compound in the marine environment. Elevated concentrations of HBCD were found in skipjack tuna from areas around Japan, which have the larger modern industrial/urban societies, and implicated these areas as primary regional sources. All three individual HBCD isomers (alpha-, gamma- and beta-HBCD) were detected in almost all samples; the percentage contribution of the alpha-isomer to total HBCD increased with increasing latitude. The estimated empirical 1/2 distance for alpha-HBCD was 8500 km, which is one of the highest atmospheric transportability among various halogenated persistent organic pollutants (POPs).  相似文献   
225.
226.
227.
Arthrogryposis multiplex congenita (AMC) refers to an aetiologically heterogenous condition, which consists of joint contractures affecting two or more joints starting prenatally. The incidence is approximately one in 3000 live births; however, the prenatal incidence is higher, indicating a high intrauterine mortality. Over 320 genes have been implicated showing the genetic heterogeneity of the condition. AMC can be of extrinsic aetiology resulting from intrauterine crowding secondary to congenital structural uterine abnormalities (eg, bicornuate or septate uterus), uterine tumors (eg, fibroid), or multifetal pregnancy or intrinsic/primary/fetal aetiology, due to functional abnormalities in the brain, spinal cord, peripheral nerves, neuromuscular junction, muscles, bones, restrictive dermopathies, tendons and joints. Unlike many of the intrinsic/primary/fetal causes which are difficult to treat, secondary AMC can be treated by physiotherapy with good response. Primary cases may present prenatally with fetal akinesia associated with joint contractures and occasionally brain abnormalities, decreased muscle bulk, polyhydramnios, and nonvertex presentation while the secondary cases usually present with isolated contractures. Complete prenatal and postnatal investigations are needed to identify an underlying aetiology and provide information regarding its prognosis and inheritance, which is critical for the obstetrical care providers and families to optimize the pregnancy management and address future reproductive plans.  相似文献   
228.
The former Bermite site north of Los Angeles, California, was used to manufacture various explosives and related products containing energetic compounds, including perchlorate. Remediation of perchlorate in site soil and groundwater is being conducted to meet regulatory requirements and allow planned redevelopment activities to proceed. The general approach to perchlorate remediation of shallow soil at the site includes excavation of affected soils followed by ex situ bioremediation. Glycerin was chosen for use as an electron donor because of its stability, safety, low cost, and regulatory acceptance. However, full‐scale bioremediation operation with glycerin initially resulted in inconsistent results despite consistent perchlorate biodegradation observed in treatability study microcosms. To eliminate the inconsistency and optimize the biotreatment process, additional studies were performed in the field on parallel tracks to determine crucial factor(s) that influenced inconsistent breakdown of perchlorate in site soils. Total Kjeldahl nitrogen (TKN) was determined to be a significant factor limiting perchlorate biodegradation. The addition of di‐ammonium phosphate (DAP) resulted in the consistent and complete perchlorate removal, generally within two weeks of incubation with a median destruction rate of about 200 μg/kg/day. Soil processing rates were gradually increased over the year, and, by the summer, approximately 2,000 to 2,500 tons of soil were being processed per day with a total of approximately 160,000 tons processed by the end of July. The total unit treatment cost for the process is about approximately $35/ton. The glycerin‐DAP process is playing a major role in the remediation of this 1,000‐acre former industrial site. © 2008 Wiley Periodicals, Inc.  相似文献   
229.
Abstract

This paper reports on research designed to investigate the capacities of different highly characterized peats to remove odorous compounds from liquid swine manure (LSM). Peat types representing a wide range of properties were tested in order to establish which chemical and physical properties might be most indicative of their capacities to remediate odors produced by LSM. Eight percent slurries (of peat/LSM) were measured for odor changes after 24 hours using odor panel and GC/MS‐Solid‐phase microextraction (GC/MS‐SPME) analysis.

The GC/MS‐SPME and odor panel results indicated that, although all peats tested in this study were found to be effective at removing odor‐causing compounds found in LSM, some peats tended to work better than others. Overall, the peats that were the most effective at removing odor‐causing compounds tended to have lower bulk densities, ash contents, fulvic acids contents, and guaiacyl lignins contents,and higher water holding capacities, hydraulic conductivities, “total other lignins”; contents, hydrogen contents, carbon contents, and total cellulose contents.

GC/MS‐SPME analysis was found to be a reasonably inexpensive and efficient way of conducting this type of research. It allows one to identify a large number of the odor‐causing compounds found in LSM, and more importantly, to detect with some precision specific differences in the amounts of these compounds between peat types.  相似文献   
230.
ABSTRACT: The relation between landscape characteristics and water chemistry on the Delmarva Peninsula can be determined through a principal-component analysis of basin characteristics. Two basin types were defined by factor scores: (1) well-drained basins, characterized by combinations of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained basins, characterized by a combinations of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slopes. Results from base-flow sampling of 29 basins during spring 1991 indicate that water chemistry of the two basin types differ significantly. Concentrations of calcium, magnesium, potassium, alkalinity, chloride, and nitrate are elevated in well-drained basins, and specific conductance is elevated. Concentrations of aluminum, dissolved organic carbon, sodium, and silica are elevated in poorly drained basins whereas specific conductance is low. The chemical patterns found in well-drained basins can be attributed to the application of agricultural chemicals, and those in poorly drained basins can be attributed to ground-water flowpaths. These results indicate that basin types determined by a quantitative analysis of basin characteristics can be related statistically to differences in base-flow chemistry, and that the observed statistical differences can be related to major processes that affect water chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号