首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   787篇
  免费   24篇
  国内免费   5篇
安全科学   27篇
废物处理   34篇
环保管理   161篇
综合类   81篇
基础理论   219篇
环境理论   2篇
污染及防治   174篇
评价与监测   56篇
社会与环境   52篇
灾害及防治   10篇
  2023年   6篇
  2022年   9篇
  2021年   13篇
  2020年   11篇
  2019年   19篇
  2018年   34篇
  2017年   23篇
  2016年   30篇
  2015年   24篇
  2014年   25篇
  2013年   68篇
  2012年   38篇
  2011年   61篇
  2010年   32篇
  2009年   33篇
  2008年   40篇
  2007年   51篇
  2006年   31篇
  2005年   40篇
  2004年   26篇
  2003年   35篇
  2002年   23篇
  2001年   8篇
  2000年   8篇
  1999年   8篇
  1998年   8篇
  1997年   9篇
  1996年   9篇
  1995年   10篇
  1994年   11篇
  1993年   7篇
  1992年   7篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   8篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有816条查询结果,搜索用时 31 毫秒
251.

Introduction

The objective of this study was to evaluate the circumstances leading to fall from equipment injuries in the mining industry.

Method

The 2006 and 2007 Mine Safety and Health Administration annual injury databases were utilized for this study whereby the injury narrative, nature of injury, body part injured, mine type, age at injury, and days lost were evaluated for each injury.

Results

The majority of injuries occurred at surface mining facilities (∼ 60%) with fractures and sprains/strains being the most common injuries occurring to the major joints of the body. Nearly 50% of injuries occurred during ingress/egress, predominately during egress, and approximately 25% of injuries occurred during maintenance tasks. The majority of injuries occurred in relation to large trucks, wheel loaders, dozers, and conveyors/belts. The severity of injury was independent of age and the median days lost was seven days; however, there was a large range in severity.

Impact on industry

From the data obtained in this study, several different research areas have been identified for future work, which include balance and stability control when descending ladders and equipment design for maintenance tasks.  相似文献   
252.
This review presents a summary of the main interactions that occur during the carbon dioxide (CO2) adsorption at the surface of steel slags with basic (CaO, MgO), amphoteric (Al2O3, Cr2O3, TiO2, MnO, iron oxides) and acidic (SiO2) oxides. The high content of metal oxides in steel slags gives them a great potential to adsorb CO2, reaching a saturation value of about 0.25 kg of CO2/kg of slag. CO2 is physisorbed and chemisorbed on the most of metal oxide types. Generally, the CO2 physisorption on the basic and amphoteric metal oxides involves an electrostatic interaction between the CO2 and the cation from the oxides while the CO2 chemisorption rather implicates the basic sites that acts as the electron donor, and which are associated with O2? ions localized at surface defects. These interactions result in the formation of carbonates (monodentates or unidentates and bidentates). The affinity of oxides for the CO2 and the carbonate formation principally depend of the strength and number of basic sites at their surface and varies as following: basic oxides > amphoteric oxides > acidic oxides. The basic metal oxides generally represent the best electron donors and thus the best CO2 adsorbents due to the high basicity and their great number of reaction sites. Hence, it appears that the surface structure of basic and amphoteric metal oxides which may favour their interaction with the CO2, as well as their basicity is the determinant factor contributing to the formation of carbonate species. The molecular analysis of CO2 adsorption on steel slag metal oxides will provide useful data to identify rate-controlling mechanisms and should be considered for the development of new effective methods for the capture of atmospheric CO2 emissions released from industries.  相似文献   
253.
Regional and global air pollution from marine transportation is a growing concern. In discerning the sources of such pollution, researchers have become interested in tracking where along the total fuel life cycle these emissions occur. In addition, new efforts to introduce alternative fuels in marine vessels have raised questions about the energy use and environmental impacts of such fuels. To address these issues, this paper presents the Total Energy and Emissions Analysis for Marine Systems (TEAMS) model. TEAMS can be used to analyze total fuel life cycle emissions and energy use from marine vessels. TEAMS captures "well-to-hull" emissions, that is, emissions along the entire fuel pathway, including extraction, processing, distribution, and use in vessels. TEAMS conducts analyses for six fuel pathways: (1) petroleum to residual oil, (2) petroleum to conventional diesel, (3) petroleum to low-sulfur diesel, (4) natural gas to compressed natural gas, (5) natural gas to Fischer-Tropsch diesel, and (6) soybeans to biodiesel. TEAMS calculates total fuel-cycle emissions of three greenhouse gases (carbon dioxide, nitrous oxide, and methane) and five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with aerodynamic diameters of 10 microm or less, and sulfur oxides). TEAMS also calculates total energy consumption, fossil fuel consumption, and petroleum consumption associated with each of its six fuel cycles. TEAMS can be used to study emissions from a variety of user-defined vessels. This paper presents TEAMS and provides example modeling results for three case studies using alternative fuels: a passenger ferry, a tanker vessel, and a container ship.  相似文献   
254.
The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used gasoline motor oil but not in fresh oil and are negligible in used diesel engine oil. The contributions of lubrication oils to abundances of these PAHs in the exhaust were large in some cases and were variable with the age and consumption rate of the oil. These factors contributed to the observed variations in their abundances to total carbon or PM2.5 among the SI composition profiles.  相似文献   
255.
Floating marine plastic debris was found to function as solid-phase extraction media, adsorbing and concentrating pollutants out of the water column. Plastic debris was collected in the North Pacific Gyre, extracted, and analyzed for 36 individual PCB congeners, 17 organochlorine pesticides, and 16 EPA priority PAHs. Over 50% contained PCBs, 40% contained pesticides, and nearly 80% contained PAHs. The PAHs included 2, 3 and 4 ring congeners. The PCBs were primarily CB-11, 28, 44, 52, 66, and 101. The pesticides detected were primarily p,p-DDTs and its metabolite, o,p-DDD, as well as BHC (a,b,g and d). The concentrations of pollutants found ranged from a few ppb to thousands of ppb. The types of PCBs and PAHs found were similar to those found in marine sediments. However, these plastic particles were mostly polyethylene which is resistant to degradation and although functioning similarly to sediments in accumulating pollutants, these had remained on or near the ocean surface. Particles collected included intact plastic items as well as many pieces less than 5 mm in size.  相似文献   
256.
The Little Missouri National Grasslands (LMNG) of western North Dakota support the largest permitted cattle grazing use within all lands administered by the USDA, Forest Service, as well as critical habitat for many wildlife species. This fact, coupled with the need to revise current planning direction for range allotments of the LMNG, necessitated that a broad-level characterization of ecosystem integrity and resource conditions be conducted across all lands within the study area (approximately 800,000 hectares) in a rapid and cost-effective manner. The approach taken in this study was based on ecological classifications, which effectively utilized existing field plot data collected for a variety of previous inventory objectives, and their continuous spatial projection across the LMNG by maps of both existing and potential vegetation. These two map themes represent current and reference conditions (existing vs. potential vegetation); their intersection allowed us to assign various ecological status ratings (i.e., ecosystem integrity and resource condition) based on the degree of departure between current and reference conditions. In this paper, we present a brief review of methodologies used in the development of ecological classifications, and also illustrate their application to assessments of rangeland health through selected maps of ecological status ratings for the LMNG.  相似文献   
257.
258.
The aim of this paper is to illustrate the benefits,and challenges towards providing multifunctional urban green spaces.The results are based on critical analysis of study findings from different cities in Europe,America and to a lesser extent in Asia.Inner-city green spaces are especially important for improving air quality through uptake of pollutant gases and particulates which are responsible for respiratory infections.Due to their amenity and aesthetics,green spaces increase property value.To ensure multifunctional role of urban a green space is achieved,in particular the social and psychological role,certain standards of quantity,quality and distribution within the urban area should be adequately established.Green spaces need to be uniformly distributed throughout the city area,although each does not need to be extremely large but should be large enough to accommodate the city population.  相似文献   
259.
Benzene is a volatile organic compound known to be carcinogenic to humans (Group 1) and may be present in food. In the present study, 455 food samples from the Belgian market were analyzed for benzene contents and some possible sources of its occurrence in the foodstuffs were evaluated. Benzene was found above the level of detection in 58% of analyzed samples with the highest contents found in processed foods such as smoked and canned fish, and foods which contained these as ingredients (up to 76.21 μg kg−1). Unprocessed foods such as raw meat, fish, and eggs contained much lower concentrations of benzene. Using the benzene concentrations in food, a quantitative dietary exposure assessment of benzene intake was conducted on a national representative sample of the Belgian population over 15 years of age. The mean benzene intake for all foods was 0.020 μg kg bw d−1 according to a probabilistic analysis. These values are below the minimum risk level for oral chronic exposure to benzene (0.5 μg kg bw d−1).  相似文献   
260.
Mixed pollution is a characteristic of many industrial sites and constructed wetlands. Plants possessing an enzymatic detoxifying system that is able to handle xenobiotics seems to be a viable option for the removal of mixed persistent contaminants such organochlorines (OCs: monochlorobenzene (MCB), 1,4-dichlorobenzene (DCB), 1,2,4-trichlorobenzene (TCB), γ-hexachlorocyclohexane (HCH)). In this study, Phragmites australis plants were exposed to sub-lethal concentrations of OCs (7 days), in single-exposure (0.8 to 10 mg?l?1) and in mixture of OCs (0.2 mg?l?1 MCB?+?0.2 mg?l?1 DCB?+?2.5 mg?l?1 TCB?+?0.175 mg?l?1 HCH). Studies were conducted on the detoxification phase II enzymes; glutathione S-transferases (GST), and glucosyltransferases (UGT). Measurements of GST and UGT activities revealed that OCs may be buffered by glutathione and glucose conjugation. There appeared to be a correlation between the effects on phase II enzymes and the degree of chlorination of the benzene ring with, for example, the greatest effects being obtained for HCH exposure. In the case of mixed pollution, the induction of some GST isoenzymes (CDNB, 35 % non-significant) and UGT (118 %) in leaves and the inhibition of phase II enzymes in the other organs were measured. UGTs appear to be key enzymes in the detoxification of OCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号