首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   789篇
  免费   24篇
  国内免费   6篇
安全科学   27篇
废物处理   34篇
环保管理   161篇
综合类   84篇
基础理论   219篇
环境理论   2篇
污染及防治   174篇
评价与监测   56篇
社会与环境   52篇
灾害及防治   10篇
  2023年   6篇
  2022年   9篇
  2021年   14篇
  2020年   11篇
  2019年   19篇
  2018年   34篇
  2017年   23篇
  2016年   30篇
  2015年   24篇
  2014年   25篇
  2013年   68篇
  2012年   38篇
  2011年   61篇
  2010年   32篇
  2009年   33篇
  2008年   40篇
  2007年   51篇
  2006年   31篇
  2005年   40篇
  2004年   26篇
  2003年   35篇
  2002年   23篇
  2001年   8篇
  2000年   8篇
  1999年   8篇
  1998年   8篇
  1997年   9篇
  1996年   9篇
  1995年   10篇
  1994年   11篇
  1993年   7篇
  1992年   7篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   8篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1971年   2篇
  1967年   1篇
  1963年   1篇
排序方式: 共有819条查询结果,搜索用时 265 毫秒
571.
In recent years, many states have sought to set soil standards for hazardous waste sites. For example, Michigan and Oregon have had soil standards for several years, and within the last three years Massachusetts, New Jersey, Pennsylvania, and Texas have derived soil standards; while Illinois and several other states are in the process of developing soil standards. In general, soil cleanup standards are set to protect against leaching to groundwater and direct contact with soil. This article reviews several agencies' protocols and presents a sensitivity analysis of parameters used to establish these soil cleanup standards. Major issues examined in this article include land use (residential versus commercial/industrial) and exposure parameters used for deriving soil cleanup standards for direct contact. Soil cleanup standards are developed considering exposure routes such as ingestion, dermal contact, inhalation of vapors, and fugitive dust. Other factors such as chemical/physical properties are also considered. For example, many states use Toxicity Characteristic Leaching Procedure (TCLP) or EPA Method 1312 Synthetic Precipitation Leaching Procedure (SPLP) to derive soil standards protective of leaching to groundwater. The results indicate that factors such as leaching and certain exposure assumptions play a key role in determining soil cleanup standards. Exposure pathways were examined by performing a sensitivity analysis using a generic equation to consider exposure from ingestion, dermal contact, and inhalation of soil in deriving soil cleanup standards. The sensitivity analysis indicates that selection of exposure parameters such as toxicity values and soil-to-skin adherence factors contribute more substantially than others. These two factors are also among those values with the greatest uncertainty. Selection of exposure pathways is also important for the derivation of soil cleanup standards. For example, inhalation is the most significant exposure pathway for volatile organic compounds such as toluene, yet many states do not evaluate this exposure route. These findings are based on the mathematical models used by the agencies, and no judgments are made on the validity of the models. The results of this analysis can help focus attention on the most sensitive parameters as federal government reforms environment policies (i.e., CERCLA and RCRA) and the development of national soil cleanup standards is debated.  相似文献   
572.
ABSTRACT: Based on alkalinity data for 596 lakes, 31 percent of Florida's 7300 lakes have < 100 μeq/l alkalinity and are sensitive to acid depostion. More than two-thirds of the lakes in 12 northern Florida counties fit this criterion. Increasing aluminum and decreasing nutrient and chlorophyll a concentrations were observed with decressing pH in a survery of 20 softwater lakes. Maximum measured aluminum values (100-150 μg/L) are below levels asociated with fish toxicity. Factor analysis showed that lake chemistry was related to three principal factors, representing three major processes: watershed weathering, acidification, and nutrient inputs. An acidification index defined as the difference between excess SO42- and excess (Ca2++Mg2+) accounted for 74 percent of the variance in lake pH. Comparison of historical (late 1950a) and present data for pH, alkalinity, and excess SO42- indicated loss of alkalinity (>25 μeq/L) and increase in excess SO42- (16-34 μeq/L) in several softwater lakes.  相似文献   
573.
We present a comparison of the climate in prospective states or sites under consideration for the eastern repository for high-level nuclear waste in the United States.We found that atmospheric conditions over several south-eastern sites rank lower than the other prospective areas in effective dispersal, as perFederal Register 10CFR 960.5-2-3 (1984). Also, damage rates in North Carolina and Virginia, and death rates in Virginia, from tropical storms and hurricanes exceed those of the other candidate states. These storms, as well as other mechanisms, subject piedmont Virginia and North Carolina to a high frequency of flash flooding. Death rates from all weather-related causes (including winter storms, tornadoes, and weather-related vehicle accidents) are also highest in Virginia and North Carolina. This finding is rather surprising in light of tornado and blizzard frequencies in northern candidate states.Based upon a 20-year study of damage and mortality figures from the US Department of Commerce publicationStorm Data for all weather-related causes, Virginia and North Carolina rank highest. If this is taken as a measure of relative compliance withFederal Register potentially adverse condition 960.5-2-3[c][2] pertaining to the history of severe weather phenomena in relation to repository siting, then these states are the least favorable from a climatic viewpoint.  相似文献   
574.
An alternative method of in-situ groundwater sparging, termed density-driven convection (patent pending), is presented. This method has been successfully used to remediate eight underground storage tank releases involving a wide distillation range of petroleum hydrocarbons (gasoline to waste oil) and in a variety of site soils (clay to sandy gravel). Application of the density-driven convection method is detailed in a case study. The system, installed to remediate a gasoline and diesel release from an underground storage tank, was operated and monitored for a period of one year. Monitoring data indicate reductions in total petroleum hydrocarbon concentrations in groundwater and in soil. Concentrations of aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylenes, and naphthalene) also decreased in both media. Stimulation of natural biodegradation, the primary mechanism of removal, occurred rapidly. Natural biological activity gradually declined over the subsequent 150 days. After one year of operation, the sparging system has achieved or is rapidly approaching the regulatory cleanup goals for both soil and groundwater, including reduction of dissolved concentrations below maximum contaminant levels established under the Safe Drinking Water Act.  相似文献   
575.
ABSTRACT: The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.  相似文献   
576.
577.
ABSTRACT: Phosphorus fluxes and water quality functions of a bottomland hardwood and freshwater marsh wetland soil were compared. The effect of soil physicochemical conditions, phosphorus loading rate, and diffusive exchange between soils and the overlying food water column on phosphorus release and retention were studied. The predominantly mineral swamp forest soil displayed greater phosphorus sorption potential than the organic freshwater marsh soil. Moreover, due to its low bulk density (0.11 g cm?3), the freshwater marsh soil surface area required for phosphorus retention is very large compared to the bottomland hardwood wetland soil. For both wetlands, soil redox status affected P release and assimilatory capacity. The more reducing the soils, the smaller their phosphorus retention capacity (greater their release). Phosphorus removal from the overlying water column into the wetland soils followed a first-order kinetic model. Under similar hydrological conditions, phosphorus was found to diffuse 1.2 times faster to the bottom. land hardwood soil than in the freshwater marsh soil. Results indicate that while the bottomland hardwood wetland soil will serve as a sink for phosphorus entering such wetland, phosphorus will be released and exported from the freshwater marsh soil into adjacent ecosystems.  相似文献   
578.
The equilibrium partitioning method (EqP-method) can be used to calculate soil quality standards (expressed in mg/kg) from aquatic quality standards (expressed in microg/l) using a partitioning coefficient. The validity of this application of the EqP-method was studied comparing aquatic with terrestrial toxicity data. The data set collected for deriving environmental quality standards in the Netherlands, was used for this study. For 10 organic substances (chlorpyrifos, atrazine, carbofuran, pentachlorophenol, chlordane, aldrin, trichlorobenzene, heptachlor, trichlorophenol and trichloroethene) and for 8 metals, sufficient data were available. The aquatic toxicity data were multiplied by the partitioning coefficient in order to obtain aquatic data expressed in mg/kg. For some compounds the terrestrial toxicity data were significantly higher than the aquatic data but for other compounds it was the other way around. These differences indicate that the EqP-method can give significant over-or underestimations, due to inaccurate partitioning coefficients or differences in species sensitivities. These over- or underestimations can have an impact on the setting of environmental quality standards which are based on the hazardous concentration 5% (HC5) values. The uncertainty in the calculation of HC5 values attributed to the use of the EqP-method, was quantified. The HC5 values derived using the EqP-method were in 5% of the cases more than 20 times higher than the corresponding HC5 values that were derived directly from soil toxicity tests. Despite of this uncertainty the use of the EqP-method can still be advocated for setting soil quality guidelines when only a very limited number of terrestrial toxicity data are available.  相似文献   
579.
The U.S. Environmental Protection Agency (EPA) published the Regional Haze Rule (RHR) in 1999. The RHR default goal is to reduce haze linearly to natural background in 2064 from the baseline period of 2000-2004. The EPA default method for estimating natural and baseline visibility uses the Interagency Monitoring of Protected Visual Environments (IMPROVE) formula. The IMPROVE formula predicts the light extinction coefficient from aerosol chemical concentrations measured by the IMPROVE network. The IMPROVE light scattering coefficient formula using data from 1994-2002 underestimated the measured light scattering coefficient by 700 Mm(-1), on average, on days with precipitation. Also, precipitation occurred as often on the clearest as haziest days. This led to estimating the light extinction coefficient of precipitation, averaged over all days, as the light scattering coefficient on days with precipitation (700 Mm(-1)) multiplied by the percent of precipitation days in a year. This estimate added to the IMPROVE formula light extinction estimate gives a real world estimate of visibility for the 20% clearest, 20% haziest, and all days. For example, in 1993, the EPAs Report to Congress projected visibility in Class I areas would improve by 3 deciviews by 2010 across the haziest portions of the eastern United States because of the 1990 Clean Air Act Amendments. Omitted was the light extinction coefficient of precipitation. Adding in the estimated light extinction coefficient of precipitation, the estimated visibility improvement declines to <1 deciview.  相似文献   
580.
A diesel fuel contaminated aquifer in Menziken, Switzerland was treated for 4.5 years by injecting aerated groundwater, supplemented with KNO3 and NH4H2PO4 to stimulate indigenous populations of petroleum hydrocarbon (PHC) degrading microorganisms. After dissolved PHC concentrations had stabilized at a low level, engineered in situ bioremediation was terminated. The main objective of this study was to evaluate the efficacy of intrinsic in situ bioremediation as a follow-up measure to remove PHC remaining in the aquifer after terminating engineered in situ bioremediation. In the first 7 months of intrinsic in situ bioremediation, redox conditions in the source area became more reducing as indicated by lower concentrations of SO4(2-) and higher concentrations of Fe(II) and CH4. In the core of the source area, strongly reducing conditions prevailed during the remaining study period (3 years) and dissolved PHC concentrations were higher than during engineered in situ bioremediation. This suggests that biodegradation in the core zone was limited by the availability of oxidants. In lateral zones of the source area, however, gradually more oxidized conditions were reestablished again, suggesting that PHC availability increasingly limited biodegradation. The total DIC production rate in the aquifer decreased within 2 years to about 25% of that during engineered in situ bioremediation and remained at that level. Stable carbon isotope analysis confirmed that the produced DIC mainly originated from PHC mineralization. The total rate of DIC and CH4 production in the source area was more than 300 times larger than the rate of PHC elution. This indicates that biodegradation coupled to consumption of naturally occurring oxidants was an important process for removal of PHC which remained in the aquifer after terminating engineered measures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号