首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19673篇
  免费   215篇
  国内免费   135篇
安全科学   579篇
废物处理   788篇
环保管理   2398篇
综合类   5623篇
基础理论   4129篇
环境理论   6篇
污染及防治   4644篇
评价与监测   1052篇
社会与环境   707篇
灾害及防治   97篇
  2018年   260篇
  2017年   240篇
  2016年   361篇
  2015年   287篇
  2014年   384篇
  2013年   1371篇
  2012年   469篇
  2011年   663篇
  2010年   604篇
  2009年   677篇
  2008年   689篇
  2007年   731篇
  2006年   654篇
  2005年   556篇
  2004年   577篇
  2003年   554篇
  2002年   510篇
  2001年   663篇
  2000年   462篇
  1999年   322篇
  1998年   239篇
  1997年   232篇
  1996年   225篇
  1995年   258篇
  1994年   278篇
  1993年   236篇
  1992年   244篇
  1991年   255篇
  1990年   266篇
  1989年   238篇
  1988年   192篇
  1987年   196篇
  1986年   195篇
  1985年   197篇
  1984年   210篇
  1983年   202篇
  1982年   208篇
  1981年   230篇
  1980年   182篇
  1979年   192篇
  1978年   153篇
  1977年   149篇
  1974年   153篇
  1973年   149篇
  1968年   157篇
  1967年   186篇
  1966年   159篇
  1965年   150篇
  1964年   155篇
  1963年   144篇
排序方式: 共有10000条查询结果,搜索用时 625 毫秒
191.
 Ants have a well developed olfactory sense, which they need both for the perception of environmental chemicals, and for a highly sophisticated intraspecific communication system based on pheromones. The question arises therefore as to how different odors are coded in the antennal lobe, the first central neuropil to process olfactory information. We measured odor-evoked activity patterns using in vivo neuropil calcium recording in the antennal lobe of the ant Camponotus rufipes. We found that (a) odors elicit focal activity spots (diameter ca. 20 μm) which most probably represent the olfactory glomeruli; (b) different odors are coded in odor specific patterns of such activated spots, and a particular spot can participate in the pattern for different odors; (c) calcium increased in the activated spots within the 2-s stimulation period and slowly declined thereafter. Received: 10 March 1999 / Accepted in revised form: 5 July 1999  相似文献   
192.
193.
194.
195.
196.
197.
198.
199.
Recent years have shown a rise in mean global temperatures and a shift in the geographical distribution of ectothermic animals. For a cause and effect analysis the present paper discusses those physiological processes limiting thermal tolerance. The lower heat tolerance in metazoa compared with unicellular eukaryotes and bacteria suggests that a complex systemic rather than molecular process is limiting in metazoa. Whole-animal aerobic scope appears as the first process limited at low and high temperatures, linked to the progressively insufficient capacity of circulation and ventilation. Oxygen levels in body fluids may decrease, reflecting excessive oxygen demand at high temperatures or insufficient aerobic capacity of mitochondria at low temperatures. Aerobic scope falls at temperatures beyond the thermal optimum and vanishes at low or high critical temperatures when transition to an anaerobic mitochondrial metabolism occurs. The adjustment of mitochondrial densities on top of parallel molecular or membrane adjustments appears crucial for maintaining aerobic scope and for shifting thermal tolerance. In conclusion, the capacity of oxygen delivery matches full aerobic scope only within the thermal optimum. At temperatures outside this range, only time-limited survival is supported by residual aerobic scope, then anaerobic metabolism and finally molecular protection by heat shock proteins and antioxidative defence. In a cause and effect hierarchy, the progressive increase in oxygen limitation at extreme temperatures may even enhance oxidative and denaturation stress. As a corollary, capacity limitations at a complex level of organisation, the oxygen delivery system, define thermal tolerance limits before molecular functions become disturbed.  相似文献   
200.
 The Australian buprestid beetle Merimna atrata (Coleoptera: Buprestidae) approaches forest fires because its larvae develop in freshly burnt wood. So far nothing is known about possible sensory systems enabling the beetles to detect fires and to cope with the thermal environment close to the flames. We found that M. atrata has two pairs of infrared (IR) organs on the ventrolateral sides of the abdomen. Each IR organ consists of a specialized IR-absorbing area which is innervated by one thermosensitive multipolar neuron. The primary dendritic branches ramify into more than 800 closely packed terminal endings which contain a large number of mitochondria. We called the special morphology of the dendritic region a terminal dendritic mass. The type of IR receptor found in M. atrata is unique in insects and can best be compared with the IR organs of boid snakes. Received: 14 August 2000 / Accepted in revised form: 18 October 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号