首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19693篇
  免费   343篇
  国内免费   344篇
安全科学   779篇
废物处理   877篇
环保管理   3074篇
综合类   3199篇
基础理论   4988篇
环境理论   10篇
污染及防治   5039篇
评价与监测   1154篇
社会与环境   1101篇
灾害及防治   159篇
  2023年   92篇
  2022年   178篇
  2021年   188篇
  2020年   204篇
  2019年   164篇
  2018年   337篇
  2017年   306篇
  2016年   463篇
  2015年   381篇
  2014年   507篇
  2013年   1612篇
  2012年   696篇
  2011年   1019篇
  2010年   768篇
  2009年   877篇
  2008年   937篇
  2007年   997篇
  2006年   833篇
  2005年   685篇
  2004年   689篇
  2003年   651篇
  2002年   600篇
  2001年   690篇
  2000年   568篇
  1999年   352篇
  1998年   244篇
  1997年   258篇
  1996年   249篇
  1995年   290篇
  1994年   239篇
  1993年   235篇
  1992年   192篇
  1991年   203篇
  1990年   188篇
  1989年   189篇
  1988年   167篇
  1987年   150篇
  1986年   168篇
  1985年   162篇
  1984年   201篇
  1983年   165篇
  1982年   186篇
  1981年   181篇
  1980年   142篇
  1979年   156篇
  1978年   100篇
  1977年   106篇
  1975年   92篇
  1974年   99篇
  1972年   100篇
排序方式: 共有10000条查询结果,搜索用时 500 毫秒
621.
Whole-tree O3 uptake was exemplified for Picea abies, Fagus sylvatica and Larix decidua in stands at high and low altitude and contrasting water availability through sap flow measurement in tree trunks, intrinsically accounting for drought and boundary layer effects on O3 flux. O3 uptake of evergreen spruce per unit foliage area was enhanced by 100% at high relative to low elevation, whereas deciduous beech and larch showed similar uptake regardless of altitude. The responsiveness of the canopy conductance to water vapor and, as a consequence, O3 uptake to soil moisture and air humidity did not differ between species. Unifying findings at the whole-tree level will promote cause-effect based O3 risk assessment and modeling.  相似文献   
622.
Pipeline crossing construction alters river and stream channels, hence may have detrimental effects on aquatic ecosystems. This review examines the effects of crossing construction on fish and fish habitat in rivers and streams, and recommends an approach to monitoring and assessment of impacts associated with these activities. Pipeline crossing construction is shown to not only compromise the integrity of the physical and chemical nature of fish habitat, but also to affect biological habitat (e.g., benthic invertebrates and invertebrate drift), and fish behavior and physiology. Indicators of effect include: water quality (total suspended solids TSS), physical habitat (substrate particle size, channel morphology), benthic invertebrate community structure and drift (abundance, species composition, diversity, standing crop), and fish behavior and physiology (hierarchy, feeding, respiration rate, loss of equilibrium, blood hematocrit and leukocrit levels, heart rate and stroke volume). The Before-After-Control-Impact (BACI) approach, which is often applied in Environmental Effects Monitoring (EEM), is recommended as a basis for impact assessment, as is consideration of site-specific sensitivities, assessment of significance, and cumulative effects.  相似文献   
623.
The usability of high-resolution satellite imagery for estimating spatial water quality patterns in urban water bodies is evaluated using turbidity in the lower Charles River, Boston as a case study. Water turbidity was surveyed using a boat-mounted optical sensor (YSI) at 5 m spatial resolution, resulting in about 4,000 data points. The ground data were collected coincidently with a satellite imagery acquisition (IKONOS), which consists of multispectral (R, G, B) reflectance at 1 m resolution. The original correlation between the raw ground and satellite data was poor (R2 = 0.05). Ground data were processed by removing points affected by contamination (e.g., sensor encounters a particle floc), which were identified visually. Also, the ground data were corrected for the memory effect introduced by the sensor's protective casing using an analytical model. Satellite data were processed to remove pixels affected by permanent non-water features (e.g., shoreline). In addition, water pixels within a certain buffer distance from permanent non-water features were removed due to contamination by the adjacency effect. To determine the appropriate buffer distance, a procedure that explicitly considers the distance of pixels to the permanent non-water features was applied. Two automatic methods for removing the effect of temporary non-water features (e.g., boats) were investigated, including (1) creating a water-only mask based on an unsupervised classification and (2) removing (filling) all local maxima in reflectance. After the various processing steps, the correlation between the ground and satellite data was significantly better (R2 = 0.70). The correlation was applied to the satellite image to develop a map of turbidity in the lower Charles River, which reveals large-scale patterns in water clarity. However, the adjacency effect prevented the application of this method to near-shore areas, where high-resolution patterns were expected (e.g., outfall plumes).  相似文献   
624.
We studied the effects of inter-annual variability and serial correlation on the statistical power of monitoring schemes to detect trends in biomass of bream (Abramis brama) in Lake Veluwemeer (The Netherlands). In order to distinguish between 'true' system variability and sampling variability we simulated the development of the bream population, using estimates for population structure and growth, and compared the resulting inter-annual variabilities and serial correlations with those from field data. In all cases the inter-annual variability in the field data was larger than in simulated data (e.g. for total biomass of all assessed bream sigma = 0.45 in field data, and sigma = 0.03-0.14 in simulated data) indicating that sampling variability decreased statistical power for detecting trends. Moreover, sampling variability obscured the inter-annual dependency (and thus the serial correlation) of biomass, which was expected because in this long-lived population biomass changes are buffered by the many year classes present. We did find the expected serial correlation in our simulation results and concluded that good survey data of long-lived fish populations should show low sampling variability and considerable inter-annual serial correlation. Since serial correlation decreases the power for detecting trends, this means that even when sampling variability would be greatly reduced, the number of sampling years to detect a change of 15%.year(-1) in bream populations (corresponding to a halving or doubling in a six-year period) would in most cases be more than six. This would imply that the six-year reporting periods that are required by the Water Framework Directive of the European Union are too short for the existing fish monitoring schemes.  相似文献   
625.
Review of state of the art methods for measuring water in landfills   总被引:1,自引:0,他引:1  
In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field.  相似文献   
626.
Packaging steel is more advantageously recovered and recycled than other packaging material due to its magnetic properties. The steel used for packaging is of high quality, and post-consumer waste therefore produces high-grade ferrous scrap. Recycling is thus an important issue for reducing raw material consumption, including iron ore, coal and energy. Household refuse management consists of collection/disposal, transport, and processing and treatment - incineration and composting being the most widely used methods in Spain. Total Spanish MSW production exceeds 21 million tons per year, of which 28.1% and 6.2% are treated in compost and incineration plants, respectively. This paper presents a comprehensive study of incineration and compost plants in Spain, including a review of the different processes and technologies employed and the characteristics and quality of the recovered ferrous scrap. Of the total amount of packaging steel scrap recovered from MSW, 38% comes from compost plants and 14% from incineration plants. Ferrous scrap from incineration plants presents a high degree of chemical alteration as a consequence of the thermal process to which the MSW is subjected, particularly the conditions in which the slag is cooled, and accordingly its quality diminishes. Fragmentation and magnetic separation processes produce an enhancement of the scrap quality. Ferrous scrap from compost plants has a high tin content, which negatively affects its recycling. Cleaning and detinning processes are required prior to recycling.  相似文献   
627.
The technical viability of using inert construction and demolition (C&D) materials for the construction of seawall and breakwater foundations has been established by laboratory testing of the materials, numerical analysis of foundation stability, and a pilot field-scale engineering performance evaluation. However, quality control measures are still required so that only suitable materials are used for seawall and breakwater foundation construction. The development of different quality control measures for different site conditions is presented in this paper. The rationale, practicality, and implementation of these quality control measures are also discussed.  相似文献   
628.
We determined the maximum amounts of added phenanthrene, chrysene, and 2,5-dichlorobiphenyl sorbed onto high-energy adsorption sites in a sediment on bi-solute experiments. The bi-solute pairs were phenanthrene/chrysene and phenanthrene/2,5-dichlorobiphenyl. On the bi-solute sorption experiments, one solute was introduced and equilibrated with sediment prior to addition of the second solute. The values for the maximum amounts adsorbed onto high-energy sites revealed that, after equilibration of the first solute, still some high-energy sites could be occupied by the second solute. Phenanthrene, chrysene, and 2,5-dichlorobiphenyl seem to share about 30% of the accessible high-energy adsorption sites in the sediment employed.  相似文献   
629.
A comparison of two techniques (gaseous purge and vial desorption) for studying the kinetics of desorption of hydrophobic pollutants from natural sediments was conducted using identical, pre-equilibrated pollutant-sediment suspensions. Desorption profiles for the two techniques [for Lindane, Aldrin, 2,2'-dichlorobiphenyl (2,2'-DCB), 4,4'-dichlorobiphenyl (4,4'-DCB), and 2,2',6,6'-tetrachlorobiphenyl (TCB)] were then compared, based on the distribution of pollutant mass between the labile (fast) and non-labile (slow) desorption phases and the release rate constants for each phase of release. The vial desorption technique shows many practical advantages over the gaseous purge technique, including its more realistic mixing conditions, the use of an independent sample for each data point (as opposed to a calculation of a cumulative mass purged at each time point), the fact that the vials constitute a closed system and are therefore less subject to ambient contamination, and the relatively low demands of time and money for the vial technique. No consistent trends in labile rate constants or in pollutant distribution between the labile and non-labile phase were observed between the two techniques. A comparison of kinetic parameters shows much faster non-labile rate constants for the gaseous purge technique, attributed to the violent, continuous agitation employed, which likely disrupted sediment aggregates and oxidized the natural organic matter associated with the sediment. Non-labile rate constants have implications for the long-term fate of compounds adsorbed to repetitively disturbed sediments. This study suggests that the traditionally less popular vial desorption technique may yield more realistic non-labile desorption rate constants.  相似文献   
630.

Background, Aim and Scope

The presence of heavy metals in wastewater is one of the main causes of water and soil pollution. The aim of the present study was to investigate the removal of Cd, Cu, Pb, Hg, Mn, Cr and Zn in urban effluent by a biological wastewater treatment, as well as to quantify the levels of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sn, Tl, V and Zn in dewatering sludge from the Biological Wastewater Treatment Plant to Ribeirão Preto (RP-BWTP), Brazil.

Materials and Methods

Concentrations of Cd, Cr, Cu, Mn and Pb in wastewater and those of Ni in sludge were determined by atomic absorption spectrophotometry with graphite furnace atomization. Mercury concentrations in wastewater were measured by hydride generation atomic spectrophotometry, and Zn levels were determined by atomic absorption spectrophotometry using acetylene flame. In sludge, the levels of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Sn, Tl, V and Zn were determined by inductively coupled plasma-mass spectrometry.

Results

The percentages of removal efficiency (RE) were the following: Hg 61.5%, Cd 60.0%, Zn 44.9%, Cu 44.2%, PB 39.7%, Cr 16,5% and Mn 10.4%. In turn, the mean concentrations (mg/kg) of metals in dewatering sludge followed this increasing order: Tl (<0.03), Hg (0.31), Be (0.43), As (1.14), Cd (1.34), V (59.2), Pb (132.1), Sn (166.1), Cr (195.0), Mn (208.1), Ni (239.4), Cu (391.7), Zn (864.4) and Fe (20537).

Discussion

The relationship between metal levels in untreated wastewater, as well as the removal efficiency are in agreement with previous data from various investigators, It is important to note that metal removal efficiency is not only affected by metal ion species and concentration, but also by other conditions such as operating parameters, physical, chemical, and biological factors.

Conclusions

Metal values recorded for treated wastewater and sludge were within the maximum permitted levels established by the Environmental Sanitation Company (CETESB), São Paulo, Brazil.

Recommendations

There is an urgent need for the authorities who are responsible for legislation on sludge uses in agriculture of establishing safety levels for As, Be, Hg, Sn, Tl and V.

Perspectives

According to the current metal levels, RP-BWTP sludge might be used for agriculture purposes. However, for an environmentally safe use of sewage sludge, further studies including systematic monitoring are recommended. Annual metal concentrations and predicted variations of those elements in the sludge should be monitored.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号