Hepatitis A virus (HAV) is currently recognized as an important human food borne pathogen, and it is one of the most resistant
enteric RNA viruses, is highly infectious, and may lead to widespread outbreaks. The aim of this study was to optimize the
methods to detect HAV from artificially contaminated food. To this end, strawberry and lettuce were experimentally contaminated
with HAV suspension containing 6 × 106 copies/ml. After contamination, HAV persistence and washing procedure were evaluated at 0, 1, 3, 7, and 9 days of storage.
Five elution buffers (PBS (pH 7.4)/0.1% Tween80; 50 mM glycine/3% (wt/vol) beef extract (pH 9.5); PBS (pH 7, 4); 25 mM glycine/0.1
Tween80; and 1 M sodium bicarbonate) were used to elute the virus, and qualitative and quantitative PCR were used for HAV
detection. HAV was detected by qualitative and quantitative PCR using any of the five elution buffers, but PBS was the most
effective. Even after washing, HAV was detected up to 9 days after contamination by quantitative PCR. Quantitative PCR was
more sensitive than qualitative PCR since samples containing viral load lower than 1.4 × 103 copies/ml could not be detected by qualitative PCR. Quantitative PCR can be used for rapid detection of food borne viruses
and will help in the monitoring and control of food borne disease. 相似文献
This study investigated the effectiveness of successive bioaugmentation, conventional bioaugmentation, and biostimulation of biodegradation of B10 in soil. In addition, the structure of the soil microbial community was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis. The consortium was inoculated on the initial and the 11th day of incubation for successive bioaugmentation and only on the initial day for bioaugmentation and conventional bioaugmentation. The experiment was conducted for 32 days. The microbial consortium was identified based on sequencing of 16S rRNA gene and consisted as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Ochrobactrum intermedium. Nutrient introduction (biostimulation) promoted a positive effect on microbial populations. The results indicate that the edaphic community structure and dynamics were different according to the treatments employed. CO2 evolution demonstrated no significant difference in soil microbial activity between biostimulation and bioaugmentation treatments. The total petroleum hydrocarbon (TPH) analysis indicated a biodegradation level of 35.7 and 32.2 % for the biostimulation and successive bioaugmentation treatments, respectively. Successive bioaugmentation displayed positive effects on biodegradation, with a substantial reduction in TPH levels. 相似文献
The fate of excess nitrogen in estuaries is determined by the microbial-driven nitrogen cycle, being denitrification a key process since it definitely removes fixed nitrogen as N2. However, estuaries receive and retain metals, which may negatively affect this process efficiency. In this study, we evaluated the role of salt marsh plants in mediating cadmium (Cd) impact on microbial denitrification process. Juncus maritimus and Phragmites australis from an estuary were collected together with the sediment involving their roots, each placed in vessels and maintained in a greenhouse, exposed to natural light, with tides simulation. Similar non-vegetated sediment vessels were prepared. After 3 weeks of accommodation, nine vessels (three per plant species plus three non-vegetated) were doped with 20 mg/L Cd2+ saline solution, nine vessels were doped with 2 mg/L Cd2+ saline solution and nine vessels were left undoped. After 10 weeks, vessels were dissembled and denitrification potential was measured in sediment slurries. Results revealed that the addition of Cd did not cause an effect on the denitrification process in non-vegetated sediment but had a clear stimulation in colonized ones (39 % for P. australis and 36 % for J. maritimus). In addition, this increase on denitrification rates was followed by a decrease on N2O emissions and on N2O/N2 ratios in both J. maritimus and P. australis sediments, increasing the efficiency of the N2O step of denitrification pathway. Therefore, our results suggested that the presence of salt marsh plants functioned as key mediators on the degree of Cd impact on microbial denitrification. 相似文献
BioDeNO(x), a novel technique to remove NO(x) from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N(2). Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO(3) on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21mM Fe(III)EDTA(-), 55 degrees C, pH 7.2+/-0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9mMh(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1mMh(-1)) rate with methanol as the electron donor. Small amounts (0.5mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides, formed out of the sulfur additives. Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO(3) (0.5-100mM) inhibited Fe(III)EDTA(-) reduction, probably because SO(3)(2-) scavenged the electron mediating compound. 相似文献
The potential environmental impact of aromatic and halogenated chemicals from the petrochemical and steel industry is of growning concern. The present paper deals with the modelling and experimental determination of density and speed of sound at the range 278.15-323.15 of six aromatic and halogenated compounds (Benzene, Toluene, Ethylbenzene, Fluorobenzene, 2-Fluorotoluene and Chlorobenzene). Fitting equations were applied to the data in order to correlate for later computer based design. The estimation of the studied properties was made by the application of different theoretical procedures. The Mchaweh-Nasrifar-Moshfeghian model (MNM), an equation of state based on the generalized van der Waals theory which combines the Staverman-Guggenheim combinatorial term of lattice statistics with an attractive lattice gas expression and the Free Length Theory showed a good response at the studied conditions. 相似文献
Biosolid application to soil may be a supply of nutrients and micronutrients but it may also accumulate toxic compounds which would be absorbed by crops and through them be incorporated to the trophic chain.
The present study deals with the effect of biosolid application on Cr, Cu, Pb, Ni, and Zn in agricultural soils. The procedure used is sequential extraction so that the availability of those metals may be estimated and related to their bioavailability as determined through two indicator plants grown in greenhouse: ryegrass (Lolium perenne L.) and red clover (Trifolium pratense). Results showed that biosolid application to soil increased total Cu and Zn content. Sequential extraction showed that the more labile Zn fractions increased after biosolid application to soil. This was confirmed when assessing the total content of this metal in shoot and root of the plants under study, since a higher content was found in plant tissues, while no significant differences were found for Cu, Cr, Ni, and Pb. 相似文献
Carbamate compounds are an important group of cholinesterase inhibitors. There is a need for creating awareness regarding the risks of the inadequate carbamate use in the residential areas due to potential adverse human effects. Carbaryl is a commonly used pesticide worldwide. A simple, fast, and high-throughput method was developed employing liquid chromatography with fluorescence detector to determine carbaryl residues in rat feces. The extraction was performed by using a rapid, easy, cheap, effective, reliable, and safe (QuEChERS) method, using acetonitrile as the extracting solvent. The parameters for the performance of the extraction method were optimized, such as ratio of mass of sample per volume of extraction solvent, QuEChERS content, and cleanup columns. Linear response was obtained for all calibration curves (solvent and matrix-matched) over the established concentration range (5–500 μg/L) with a correlation coefficients higher than 0.999. The achieved recovery was 97.9% with relative standard deviation values of 1.1% (n = 4) at 167 μg/kg fortified concentration level and the limits of detection and quantification were 27.7 and 92.3 µg/kg, respectively. 相似文献
Many pharmaceutical pollutants are chiral, existing in the environment as a single enantiomer or as mixtures of the two enantiomers. In spite of their similar physical and chemical properties, the different spatial configurations lead the enantiomers to have different interactions with enzymes, receptors or other chiral molecules, which can give diverse biological response. Consequently, biodegradation process and ecotoxicity tend to be enantioselective. Despite numerous ongoing research regarding analysis and monitorization of pharmaceutical ingredients in the environment, the fate and effects of single enantiomers of chiral pharmaceuticals (CP) in the environment are still largely unknown. There are only few chiral analytical methods to accurately measure the enantiomeric fraction (EF) in environmental matrices and during biodegradation processes. Furthermore, the ecotoxicity studies usually consider the enantiomeric pair as unique compound. We reviewed the current knowledge about CP in the environment, as well as the chiral analytical methods to determine the EF in environmental matrices. The degradation and removal processes of CP of important therapeutic classes, usually detected in the environment, and their toxicity to aquatic organisms were also reviewed. On the other hand, this review demonstrate that despite the great importance of the stereochemistry in pharmaceutical science, pharmacology and organic chemistry, this is normally neglected in environmental studies. Therefore, CP in the environment need much more attention from the scientific community, and more research within this subject is required. 相似文献