首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20335篇
  免费   181篇
  国内免费   201篇
安全科学   534篇
废物处理   986篇
环保管理   2418篇
综合类   2667篇
基础理论   5285篇
环境理论   4篇
污染及防治   5598篇
评价与监测   1650篇
社会与环境   1453篇
灾害及防治   122篇
  2023年   92篇
  2022年   215篇
  2021年   217篇
  2020年   139篇
  2019年   177篇
  2018年   326篇
  2017年   320篇
  2016年   524篇
  2015年   362篇
  2014年   573篇
  2013年   1744篇
  2012年   672篇
  2011年   859篇
  2010年   802篇
  2009年   785篇
  2008年   886篇
  2007年   977篇
  2006年   870篇
  2005年   716篇
  2004年   724篇
  2003年   704篇
  2002年   670篇
  2001年   911篇
  2000年   631篇
  1999年   393篇
  1998年   274篇
  1997年   246篇
  1996年   291篇
  1995年   270篇
  1994年   250篇
  1993年   233篇
  1992年   240篇
  1991年   208篇
  1990年   214篇
  1989年   219篇
  1988年   197篇
  1987年   158篇
  1986年   126篇
  1985年   138篇
  1984年   169篇
  1983年   153篇
  1982年   193篇
  1981年   134篇
  1980年   119篇
  1979年   152篇
  1978年   118篇
  1977年   107篇
  1976年   100篇
  1975年   83篇
  1974年   88篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
721.
As the world's freshwater resources and available energy are alarmingly decreasing, the bioelectrochemical system (BES) is a cutting-edge technology for the resolution of the resource and energy issue. Researchers have paid much attention to t he application of t he BES configuration. Based on t he brief i ntroduction of m icrobial f uel cell a nd m icrobial electrolytic cell structure, principles, and domestic and foreign research, the BES and its influencing factors are introduced, specifically including: microbial activity, electrode materials, and configuration. Three important aspects (i.e., the electrode chamber, the reaction chamber, and micro-sensor) are summarized, and the advantages and disadvantages of single-electrode and multi-electrode chambers are compared, based on the microbial desalination cell. Microbial electrolysis desalination cell: Microbial electrolysis desalination and chemical-production cell have been discussed to introduce increasing reaction chamber configuration; this review focuses on the research of BES monitoring with regards to biochemical oxygen demand. The potential applications of the research progress are explored. The results show that the configuration of multi-chamber microbial fuel cell is complex and its efficiency is low, while the single chamber configuration is advantageous. The reaction chamber added is mainly aimed at desalination, and the study of the desalination pool still needs to be focused on optimizing the cation exchange membrane to maintain the anode pH balance and reduce the air cathode dissolved oxygen. Microbial electrode sensor can be applied in more areas, and its sensitivity and long-term stability need to be further improved. However, there is relatively less research on the abundance and activity of electricigen communities; the configurations and scopes of application of BES are still the research priority. © 2018 Science Press. All rights reserved.  相似文献   
722.
Desertification has emerged as a serious threat to the alpine meadows of Northwest Sichuan in recent decades. Artificial vegetation had certain effects on desertification recovery, while how the CO2 flux changed and its reasons are still unclear. During the growing season in 2016 (i.e., from July to September), we selected the desertified alpine meadows with different recovery degrees, including the early stage of restoration, the middle stage of restoration, the late stage of restoration, and control (the unrecovered desertification meadow) as four transects. CO2 flux was measured by the instrument LI-8100, and the microenvironment factors that affected CO2 flux changes were analyzed. The results showed that the carbon sequestration function of desertified alpine meadows gradually increased with the degree of recovery. Net ecosystem exchange (NEE) were -1.61, -3.55, and -4.38 μmol m-2 s-1 in the early, mid-term, and late transects, respectively, and the most dramatic changes occurred from the early stage to mid-term stage, increasing by 120.50%. Both ecosystem respiration (ER) and soil respiration (SR) were enhanced significantly with restoration (P < 0.05). In mid or late July, NEE, ER, and SR reached their maximum values, and thereafter, the indicators varied to near zero (P < 0.05). During the whole growing season, the daily dynamic in CO2 flux for the control alpine meadow was mild and retained the trend of continuous release all day, but that in the desertified alpine meadow was a single peak pattern. Moreover, with restoration process, the peak of CO2 flux increased and reached a peak in the late stage of the recovery process. The regression analysis showed that there was a significant positive correlation between CO2 flux and vegetation coverage, aboveground biomass, and soil moisture (0-5 cm) (P < 0.01), and a weak correlation with 0-5-cm soil temperature (P < 0.01). This indicates that topsoil moisture (5 cm) is a more significant factor for CO2 flux than topsoil temperature during the growing season in the restoration of desertified alpine meadows in Northwest Sichuan. In general, the vegetation recovery significantly improved the carbon-sequestration ability of the desertified alpine meadows during the growing season in Northwest Sichuan, and at the middle stage of restoration, the carbon-sequestration ability improved significantly due to vegetation restoration and increase in topsoil (0-5 cm) moisture. © 2018 Science Press. All rights reserved.  相似文献   
723.
724.
Acer catalpifolium Rehd., a critically endangered tree species with an extremely limited range of distribution, is one of the 120 plant species with extremely small populations, as approved by the state forestry administration of the People's Republic of China and requires urgent rescue action. In order to comprehensively understand the population status and the future developmental trend of A. catalpifolium, the plant communities were investigated from 5 sites, including Caishenmiao (CSM), Banruosi (BRS), Zhangshancun (ZSC), Fuhusi (FHS), and Baoguosi (BGS). The population structure of A. catalpifolium as well as the species composition and community characteristics of its habitat were investigated. The results showed that A. catalpifolium is mainly distributed in the evergreen broad-leaved and deciduous broad-leaved mixed forests, in different community layers, namely, the tree layer, shrub layer, and herb layer, and is accompanied by 52, 74, and 52 plant species, respectively. Analyses of the distribution of population abundance revealed that BRS had the largest distribution of A. catalpifolium, accounting for 26.04% of the total population, followed by FHS, ZSC, BGS, and CSM, in that order. Analyses of the community characteristics revealed that the species diversity indices in FHS, BRS, BGS, and CSM were greater than that in ZSC. Analyses of the population age structure of A. catalpifolium revealed the gap in the distribution of the levels of seedlings and young trees. There were serious obstacles to the regeneration of the natural population. We concluded that the obstacle to the regeneration of the population of A. catalpifolium might be caused by the high competitive pressure from the dominant species and the micro-environment in the forest. Understanding the community characteristics and the population structure of A. catalpifolium could provide a theoretical foundation for its reintroduction and recovery. © 2018 Science Press. All rights reserved.  相似文献   
725.
Inonotus hispidus is a kind of rare medicinal fungus, and its natural resources are very scarce. Currently, the artificial cultivation technology of I. hispidus is not completely developed, and this reflects on its extremely low biological conversion rate and long cultivation period. In order to improve the bioconversion rate and shorten the production cycle of I. hispidus, we first analyzed the mycelia culture conditions of the collected I. hispidus, and then we further explore the method of domesticated cultivation of its fruiting body in rice medium. During the process of mycelial culture, the suitable temperature, pH, carbon source, and nitrogen source for mycelial growth were selected using the mycelial growth rate as index. During the domesticated cultivation of the fruiting body, the suitable culture medium for its growth was selected using the bioconversion rate as index. Screening results of mycelial culture conditions showed that the optimal culture conditions for the growth of mycelium of the wild I. hispidus were: temperature of 25 °C, initial pH of 6.0, glucose as the carbon source, and yeast extract powder as the source of nitrogen. The results of the domesticated cultivation showed that the biotransformation rate of I. hispidus was higher when using rice as the main medium substrate. The optimal cultivation conditions were: a 0.2% yeast extract content in the nutrient solution, a 1:1.6 ratio of rice to nutrient solution, and a 4 mL inoculum of the liquid strain. Under these conditions, it took about 4 days for the mycelium to grow over the cultivation medium. The time required for the differentiation of the primordium to form fruit bodies was about 20 days, and the bioconversion rate reached 28.70% ± 5.05%. The results of this study indicate the feasibility of using rice as the main substrate for the cultivation of I. hispidus, and it also provide new insights for the finding of new cultivation substrates for other rare medicinal fungi. © 2018 Science Press. All rights reserved.  相似文献   
726.
The aerosol direct effects result in a 3%–9% increase in PM2.5 concentrations over Southern Hebei. These impacts are substantially different under different PM2.5 loadings. Industrial and domestic contributions will be underestimated if ignoring the feedbacks. Beijing-Tianjin-Hebei area is the most air polluted region in China and the three neighborhood southern Hebei cities, Shijiazhuang, Xingtai, and Handan, are listed in the top ten polluted cities with severe PM2.5 pollution. The objective of this paper is to evaluate the impacts of aerosol direct effects on air quality over the southern Hebei cities, as well as the impacts when considering those effects on source apportionment using three dimensional air quality models. The WRF/Chem model was applied over the East Asia and northern China at 36 and 12 km horizontal grid resolutions, respectively, for the period of January 2013, with two sets of simulations with or without aerosol-meteorology feedbacks. The source contributions of power plants, industrial, domestic, transportation, and agriculture are evaluated using the Brute-Force Method (BFM) under the two simulation configurations. Our results indicate that, although the increases in PM2.5 concentrations due to those effects over the three southern Hebei cities are only 3%–9% on montly average, they are much more significant under high PM2.5 loadings (~50 μg·m−3 when PM2.5 concentrations are higher than 400 μg m−3). When considering the aerosol feedbacks, the contributions of industrial and domestic sources assessed using the BFM will obviously increase (e.g., from 30%–34% to 32%–37% for industrial), especially under high PM2.5 loadings (e.g., from 36%–44% to 43%–47% for domestic when PM2.5>400 μg·m−3). Our results imply that the aerosol direct effects should not be ignored during severe pollution episodes, especially in short-term source apportionment using the BFM.  相似文献   
727.
Shell fish processing industry is very common in coastal areas. While processing, only the meat is taken, the head and shells are discarded as waste. On an average, the sea food industry produces 80,000 tons of waste per year. The sheer amount of waste makes degradation a slow process causing accumulation of waste over a period of time. A very simple and effective solution to this environmental hazard is the recycling of shell waste to commercially viable products like chitin. Chitosan is the N-acetyl derivative of chitin obtained by N-deacetylation. Chitosan is widely used in food and bioengineering industries for encapsulation of active food ingredients, enzyme immobilization, as a carrier for controlled drug delivery, in agriculture as a plant growth promoter. Chitosan is also a defense elicitor and an antimicrobial agent. Chitosan has interesting properties such as biodegradability, biocompatibility, bioactivity, nontoxicity and polycationic nature. This review presents structural characteristics and physicochemical properties of chitosan. The methods of preparation of chitosan nanoparticles are detailed. Applications of chitosan nanoparticles are discussed. Applications include drug delivery, encapsulation, antimicrobial agent, plant growth-promoting agent and plant protector.  相似文献   
728.
Fate of imidacloprid in soil and plant after application to cotton seeds   总被引:1,自引:0,他引:1  
El-Hamady SE  Kubiak R  Derbalah AS 《Chemosphere》2008,71(11):2173-2179
This study aimed to investigate the persistence of imidacloprid in soil after application to cotton seeds and to obtain a complete picture on the mass balance of this compound in soil and cotton plants. The study was carried out as a pot culture experiment under laboratory conditions using a Gaucho formulation containing 14C-labeled imidacloprid. Three treatments of cotton seeds were made in sandy loamy soil: live seeds grown in autoclaved soil, dead seeds put in live soil and live seeds grown in live soil. Results showed that total 14C recoveries decreased by time ranging 93.8–96.2, 77.1–88.4 and 53.5–62.4% of the applied radioactivity at 7, 14, and 21 d after application, respectively. The reduction in the extracted 14C from soil coincided with the increase of non-extracted ones. Levels of bound 14C was always less in autoclaved soil than in live ones. Results revealed also that only 1.8–6.8% of the applied 14C was taken up by the plants and fluctuated within the test period. 14C levels were higher in plants grown in autoclaved soil than those in live ones and the radioactivity tended to accumulate on the edges of cotton leaves. Most of the radioactivity in the soil extracts was identified as unchanged 14C-imidacloprid.  相似文献   
729.
Plant proteolytic system includes proteases, mainly localized inside the organelles, and the ubiquitin-proteasome pathway in both, the cytoplasm and the nucleus. It was recently demonstrated that under severe Cd stress sunflower (Helianthus annuus L.) proteasome activity is reduced and this results in accumulation of oxidized proteins. In order to test if under other heavy metal stresses sunflower proteolytic system undergoes similar changes, an hydroponic experiment was carried out. Ten days old sunflower plants were transferred to hydroponic culture solutions devoid (control) or containing 100 microM of AlCl(3), CoCl(2), CuCl(2), CrCl(3), HgCl(2), NiCl(2), PbCl(2) or ZnCl(2) and analyzed for protein oxidative damage and proteolytic activities. After 4 days of metal treatment, only Co(2+), Cu(2+), Hg(2+), and Ni(2+) were found to increase carbonyl groups content. Except for Al(3+) and Zn(2+), all metals tested significantly reduced all proteasome activities (chymotrypsin-like, trypsin-like and PGPH) and acid and neutral proteases activities. The effect on basic proteases was more variable. Abundance of 20S protein after metal treatments was similar to that obtained for control samples. Co(2+), Cu(2+), Hg(2+), Ni(2+), Cr(3+), and Pb(2+) induced accumulation of ubiquitin conjugated proteins. It is concluded that heavy metal effects on proteolytic system cannot be generalized; however, impairment of proteasome functionality and decreased proteases activities seem to be a common feature involved in metal toxicity to plants.  相似文献   
730.
Thermophilic anaerobic digestion of swine manure represents a potential waste treatment technology to address environmental concerns, such as odor emissions and removal of pathogenic microorganisms. However, there are concerns relative to the stability of this process when swine manure is the sole substrate. In this study, the potential of biogas production from swine manure as the sole substrate under thermophilic (50 degrees C) conditions was investigated in the laboratory, to determine whether separation of urine and feces as part of the waste collection process would benefit anaerobic digestion. Effluent from a continuously stirred tank reactor was used as the inoculum for batch tests, in which the substrate contained three different concentrations of urine (urine-free, as-excreted urine-to-feces ratio and double the as-excreted urine-to-feces ratio). Inocula were acclimated to these same urine-to-feces ratios to determine methane production. Results show that both urine-free and as-excreted substrates were not inhibitory to anaerobic inocula. Anaerobic microorganisms can be readily acclimated to substrate with double the as-excreted urine concentration, which contained nitrogen concentrations up to 7.20 g/L. Cumulative methane production reached similar levels in the batch tests, regardless of the substrate urine concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号