首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2683篇
  免费   39篇
  国内免费   25篇
安全科学   99篇
废物处理   79篇
环保管理   510篇
综合类   415篇
基础理论   686篇
环境理论   8篇
污染及防治   633篇
评价与监测   149篇
社会与环境   126篇
灾害及防治   42篇
  2023年   14篇
  2022年   18篇
  2021年   38篇
  2020年   17篇
  2019年   28篇
  2018年   63篇
  2017年   67篇
  2016年   67篇
  2015年   70篇
  2014年   78篇
  2013年   191篇
  2012年   126篇
  2011年   159篇
  2010年   114篇
  2009年   133篇
  2008年   132篇
  2007年   166篇
  2006年   155篇
  2005年   120篇
  2004年   92篇
  2003年   80篇
  2002年   98篇
  2001年   49篇
  2000年   51篇
  1999年   36篇
  1998年   39篇
  1997年   51篇
  1996年   36篇
  1995年   41篇
  1994年   39篇
  1993年   23篇
  1992年   25篇
  1991年   15篇
  1990年   18篇
  1988年   12篇
  1987年   13篇
  1986年   17篇
  1985年   17篇
  1984年   15篇
  1983年   17篇
  1982年   13篇
  1981年   10篇
  1980年   15篇
  1979年   17篇
  1978年   11篇
  1977年   7篇
  1974年   7篇
  1965年   7篇
  1962年   7篇
  1957年   7篇
排序方式: 共有2747条查询结果,搜索用时 15 毫秒
641.
Background, aim, and scope  The enzyme-linked receptor assay (ELRA) detects estrogenic and anti-estrogenic effects at the molecular level of receptor binding and is a useful tool for the integrative assessment of ecotoxicological potentials caused by hormonally active agents (HAA) and endocrine disrupting compounds (EDC). The main advantage of the ELRA is its high sample throughput and its robustness against cytotoxicity and microbial contamination. After a methodological adaptation to salinity of the ELRA, according to the first part of this study, which increased its salinity tolerance and sensitivity for 17-β-estradiol, the optimised ELRA was used to investigate 13 native sediments characterised by different levels of salinity and chemical contamination. The applicability of the ELRA for routine analysis in environmental assessment was evaluated. Salinity is often a critical factor for bioassays in ecotoxicological sediment assessment. Therefore, salinity of the samples was additionally adjusted to different levels to characterise its influence on elution and binding processes of receptor-binding substances. Materials and methods  The ELRA was carried out with the human estrogen receptor α (ER) in a 96-well microplate format using the experimental setup known from the competitive immunoassay based on ligand–protein interaction. It is an important improvement that a physiologically relevant receptor was used as a linking protein instead of an antibody. The microplates were coated with a 17-β-estradiol-BSA conjugate, and dilution series of estradiol and of native sediment samples were added and incubated with the ER. After a washing step, a biotinylated mouse anti-ER antibody was added to each well. Receptor binding to estradiol, agonistic and antagonistic receptor binding, were determined by a streptavidin-POD-biotin complex with subsequent measurement of the peroxidase activity at the wavelength of 450 nm using a commercial ELISA multiplate reader. The sediment elutriates and pore water samples of sediments were tested in a dilution series to evaluate at which dilution step the receptor-binding potential ends. In the elution process (see Section 2.1 to 2.2), a method was developed to adjust the salinity to the levels of the reference testings, which offers an appropriate option to adjust the salinity in both directions. Statistical evaluation was made with a combination of the Mann–Whitney U test and the pT-method. Results  This part of the study characterised the environmental factor ‘salinity’ for prospective applications of the ELRA. Using reference substances such as 17-β-estradiol, the ELRA showed sigmoid concentration-effect relations over a broad range from 0.05 μg/l to 100 μg/l under physiological conditions. After methodological optimisation, both sensitivity and tolerance of the assay against salinity could be significantly raised, and the ELRA became applicable under salinity conditions up to concentrations of 20.5‰. The mean relative inter-test error (n = 3) was around 11% with reference substances and below 5% for single sediments elutriates in three replicates each. For sediment testings, the pore water and different salinity-adjusted elutriates of 13 sediments were used. A clear differentiation of the receptor-binding potential could be reached by application of the pT-method. Thereby, pT-values from one to six could be assigned to the sediments, and the deviation caused by the different salinity conditions was one pT-value. The mean standard deviation in the salinity adaptation procedure of the elutriates was below 5%. Discussion  Although the ELRA has already been used for assessments of wastewater, sludge and soil, its applicability for samples to different salinity levels has not been investigated so far. Even if the ELRA is not as sensitive as the E-screen or the YES-assay, with regard to reference substances like 17-β-estradiol, it is a very useful tool for pre-screening, because it is able to integrate both estrogenic as well as anti-estrogenic receptor-binding effects. According to the results of sediment testing, and given the integrative power to detect different directions of effects, the ELRA shows sufficient sensitivity and salinity tolerance to discriminate receptor-binding potentials in environmental samples. Conclusions  The optimised ELRA assay is a fast, cost-effective, reliable and highly reproducible tool that can be used for high-throughput screening in a microplate format in detecting both estrogenic and anti-estrogenic effects. Additionally, the ELRA is robust against microbial contaminations, and is not susceptible towards cytotoxic interferences like the common cell-culture methods. The general applicability and sufficient sensitivity of the ELRA was shown in freshwater environments. Marine and brackish samples can be measured up to salinity levels of 20.5‰. Recommendations and perspectives  In view of the proven sensitivity, functionality and the fastness of the ELRA, it is recommendable to standardise the test method. At the moment, no adequate in vitro test procedure exists which is standardised to DIN or ISO levels. The E-screen and the yeast estrogen/androgen screens (YES/YAS) sometimes underlie strong cytotoxic effects, as reported in the first part of this study. Further development of an ELRA assay using human androgen receptors appears to be very promising to gain information about androgenic and anti-androgenic effects, too. This would offer a possibility to use the ELRA as a fast and reliable pre-screening tool for the detection of endocrine potentials, thus minimising time and cost-expensive animal experiments.  相似文献   
642.
The production of N2 gas by denitrification may lead to the appearance of a gas phase below the water table prohibiting the conservative transport of tracer gases required for groundwater dating. We used a two-phase flow and transport model (STOMP) to study the reliability of 3H/3He, CFCs and SF6 as groundwater age tracers under agricultural land where denitrification causes degassing. We were able to reproduce the amount of degassing (R2 = 69%), as well as the 3H (R2 = 79%) and 3He (R2 = 76%) concentrations observed in a 3H/3He data set using simple 2D models. We found that the TDG correction of the 3H/3He age overestimated the control 3He/3He age by 2.1 years, due to the accumulation of 3He in the gas phase. The total uncertainty of degassed 3H/3He ages of 6 years (± 2 σ) is due to the correction of degassed 3He using the TDG method, but also due to the travel time in the unsaturated zone and the diffusion of bomb peak 3He. CFCs appear to be subject to significant degradation in anoxic groundwater and SF6 is highly susceptible to degassing. We conclude that 3H/3He is the most reliable method to date degassed groundwater and that two-phase flow models such as STOMP are useful tools to assist in the interpretation of degassed groundwater age tracer data.  相似文献   
643.
Monitoring of contaminant concentrations, e.g., for the estimation of mass discharge or contaminant degradation rates, often is based on point measurements at observation wells. In addition to the problem, that point measurements may not be spatially representative, a further complication may arise due to the temporal dynamics of groundwater flow, which may cause a concentration measurement to be not temporally representative. This paper presents results from a numerical modeling study focusing on temporal variations of the groundwater flow direction. “Measurements” are obtained from point information representing observation wells installed along control planes using different well frequencies and configurations. Results of the scenario simulations show that temporally variable flow conditions can lead to significant temporal fluctuations of the concentration and thus are a substantial source of uncertainty for point measurements. Temporal variation of point concentration measurements may be as high as the average concentration determined, especially near the plume fringe, even when assuming a homogeneous distribution of the hydraulic conductivity. If a heterogeneous hydraulic conductivity field is present, the concentration variability due to a fluctuating groundwater flow direction varies significantly within the control plane and between the different realizations. Determination of contaminant mass fluxes is also influenced by the temporal variability of the concentration measurement, especially for large spacings of the observation wells. Passive dosimeter sampling is found to be appropriate for evaluating the stationarity of contaminant plumes as well as for estimating average concentrations over time when the plume has fully developed. Representative sampling has to be performed over several periods of groundwater flow fluctuation. For the determination of mass fluxes at heterogeneous sites, however, local fluxes, which may vary considerably along a control plane, have to be accounted for. Here, dosimeter sampling in combination with time integrated local water flux measurements can improve mass flux estimates under dynamic flow conditions.  相似文献   
644.
645.
An indoor air quality assessment was conducted on 100 homes of recent Mexican immigrants in Commerce City, Colorado, an urban industrial community north of Denver. Head of households were administered a family health survey, filled out an activity diary, and participated in a home inspection. Carbon monoxide (CO) and carbon dioxide (CO2) were measured for 24 h inside the main living area and outside of the homes. Harvard Impactors were used to collect 24-h samples of PM2.5 at the same locations for gravimetric analysis. Dust samples were collected by vacuuming carpeting and flooring at four locations within the home and analyzed by ELISA for seven allergens. Mean indoor and outdoor PM2.5 levels were 27.2 and 8.5 μg m−3, respectively. Indoor PM2.5 and CO2 were elevated in homes for which the number of hours with door/window open was zero compared to homes in which the number of hours was high (>15 h). Indoor PM2.5 levels did not correlate with outdoor levels and tended to increase with number of inhabitants, and results indicate that the source of indoor particles were occupants and their activities, excluding smoking and cooking. Mean indoor CO2 and CO levels were 1170 and 2.4 ppm, respectively. Carbon monoxide was higher than the 24-h National Ambient Air Quality Standard in 3 of the homes. The predominant allergens were cat (Fel d 1) and mouse (Mus m 1) allergens, found in 20 and 34 homes, respectively.  相似文献   
646.
Maas Pv  Brink Pv  Klapwijk B  Lens P 《Chemosphere》2009,75(2):243-249
BioDeNO(x), a novel technique to remove NO(x) from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N(2). Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO(3) on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21mM Fe(III)EDTA(-), 55 degrees C, pH 7.2+/-0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9mMh(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1mMh(-1)) rate with methanol as the electron donor. Small amounts (0.5mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides, formed out of the sulfur additives. Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO(3) (0.5-100mM) inhibited Fe(III)EDTA(-) reduction, probably because SO(3)(2-) scavenged the electron mediating compound.  相似文献   
647.

Background, aim, and scope

The project was set to construct an extensive wetland in the southernmost region of Israel at Kibbutz Neot Smadar (30°02′45″ N and 35°01′19″ E). The results of the first period of monitoring, summary, and perspectives are presented. The constructed wetland (CW) was built and the subsequent monitoring performed in the framework of the Southern Arava Sustainable Waste Management Plan, funded by the EU LIFE Fund. The specific aims were: (1) To end current sewage disposal and pollution of the ground, the aquifer, and the dry river bed (wadi) paths by biologically treating the sewage as part of the creation of a sustainable wetland ecosystem. (2) Serve as an example of CW in the Negev highlands and the Arava Valley climates for neighboring communities and as a test ground for plants and building methods appropriate to hyper arid climate. (3) Serve as an educational resource and tourist attraction for groups to learn about water reuse, recycling, local wildlife and migrating birds, including serving the heart of a planned Ecological–Educational Bird Park. This report is intended to allow others who are planning similar systems in hyper arid climates to learn from our experience.

Materials and methods

The project is located in an extreme arid desert with less than 40 mm of rain annually and temperature ranges of ?5°C to +42°C. The site receives 165–185 m3 of municipal and agricultural wastes daily, including cowshed and goat wastes and winery outflow.

Results

The CW establishment at Neot Smadar was completed in October 2006. For 8 months, clean water flowed through the system while the plants were taking root. In June 2007, the wetland was connected to the oxidation pond and full operation began. Because of seepage and evaporation, during the first several months, the water level was not high enough to allow free flow from one bed to the next. To bed A, the water was pumped periodically from the oxidation pond (Fig. 1) and from there flowed by gravitation through the rest of the system. The initial results of the monitoring are promising. In nearly all measurements, the system succeeded as expected to reduce levels of contaminants at least to the level acceptable for irrigating fruit trees and often to the level of unlimited irrigation. The introduction of the plants in the system and their physiological performance were evaluated and were found to correlate well to the quality of water in the various beds.

Discussion

It should be said at the outset that evaluation of the performance of a CW system is a long-term process. Thus, the main aim of this report is to present the problems, difficulties, preliminary results, and concepts concerned with the first stage of establishment of CW in an extremely dry region.

Conclusions

The CW system was designed to dispose of municipal and agricultural wastes in a way that not merely reduces pollution, but adds to environmental quality by creating accessible parkland for local residents and tourists. Several factors affected the performance of the system at the initial stages of operation: ecological balance between microbes and plants, big seasonal variations, seepage and evaporation reduced the flow in the initial operation of the system. Despite the initial difficulties, the quality of water coming out the system is acceptable for irrigation.

Recommendations and perspectives

The CW can function well under extreme dryland conditions. The oxidation pond was the major source of evaporation and bad odors. Therefore, alternatives to the oxidation pond are needed. Cost effectiveness of the system still has to be evaluated systematically.  相似文献   
648.
A monitoring campaign was performed in Santiago de Chile during a winter month of 2003 and 2006 (July) using several instruments to measure the size distribution of particulate material. For the first time, the size distribution of ultrafine particles was measured in Santiago, and an estimation of its sources was done by analyzing its temporal variation. The study was performed in three sites; one of them is located in the eastern part of Santiago, a sector with low particle concentration and about 100 m from a busy street. The other site is located in the western part, which is the sector that has the highest concentration of fine and coarse particle matter during winter, also located far from a street. The third site is located within 5 m from the busiest street in Santiago. In all stations traffic is the dominating source for fine and ultrafine particles and the size distribution is peaked towards 60–100 nm (soot mode). Only in the site near the street, it is possible to see a clear peak towards smaller sizes (10–30 nm). The size distribution measurements presented here indicate that aerosol dynamics play a more important role for the Santiago case as compared to cleaner cities in Europe. Changes in the particle size during different hours of the day reflect both variations in meteorological mixing conditions as well as effects of aerosol dynamic processes such as coagulation, condensation and dry deposition. A relative increase in the number of the larger ultrafine particles (d ≥ 70 nm), as compared to the number of smaller particles (d < 70 nm) correlated with wind speed is an indication of pollution transport with aged particles from other parts of the city.  相似文献   
649.
Sanciolo P  Zou L  Gray S  Leslie G  Stevens D 《Chemosphere》2008,72(2):243-249
Membrane based treatment processes are very effective in removing salt from wastewater, but are hindered by calcium scale deposit formation. This study investigates the feasibility of removing calcium from treated sewage wastewater using accelerated seeded precipitation. The rate of calcium removal was measured during bench scale batch mode seeded precipitation experiments at pH 9.5 using various quantities of calcium carbonate as seed material. The results indicate that accelerated seeded precipitation may be a feasible option for the decrease of calcium in reverse osmosis concentrate streams during the desalination of treated sewage wastewater for irrigation purposes, promising decreased incidence of scaling and the option to control the sodium adsorption ratio and nutritional properties of the desalted water. It was found that accelerated seeded precipitation of calcium from treated sewage wastewater was largely ineffective if carried out without pre-treatment of the wastewater. Evidence was presented that suggests that phosphate may be a major interfering substance for the seeded precipitation of calcium from this type of wastewater. A pH adjustment to 9.5 followed by a 1-h equilibration period was found to be an effective pre-treatment for the removal of interferences. Calcium carbonate seed addition at 10 g l−1 to wastewater that had been pre-treated in this way was found to result in calcium precipitation from supersaturated level at 60 mg l−1 to saturated level at 5 mg l−1. Approximately 90% reduction of the calcium level occurred 5 min after seed addition. A further 10% reduction was achieved 30 min after seed addition.  相似文献   
650.
Control of hazardous organic micropollutants is a challenging water quality issue. Dissolved humic organic matter (DOM) isolated from oxyhumolite coal mined in Bohemia was investigated as a complexation agent to remove polycyclic aromatic hydrocarbons (PAHs) and functionalized phenols from water by a two-stage process involving complexation and flocculation. After the formation of humic-contaminant complexes, ferric salts were added resulting in the precipitation and flocculation of the DOM and the associated pollutants. Flocculation experiments with ferric ion coagulants indicated that precipitation of oxyhumolite DOM together with the complexed contaminants occurred at lower ferric ion concentrations than with the reference DOM in acidic environments (pH approximately 3.5). The complexation-flocculation removal rates for non-reactive PAHs characterized by small localization energies of pi-electrons correlated well with the complexation constants. On the other hand, the combined complexation-flocculation removal rates for activated PAHs including trans-stilbene, anthracene and 9-methyl anthracene, as well as functionalized polar phenols, were higher than predicted from the complexation coefficients. Methodological studies revealed for the first time that the ferric ion coagulant contributed to enhanced removal rates, most probably due to ferric ion-catalyzed pollutant degradation resulting in oxidized products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号