首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3563篇
  免费   88篇
  国内免费   95篇
安全科学   156篇
废物处理   114篇
环保管理   632篇
综合类   669篇
基础理论   903篇
环境理论   9篇
污染及防治   836篇
评价与监测   203篇
社会与环境   167篇
灾害及防治   57篇
  2023年   19篇
  2022年   30篇
  2021年   51篇
  2020年   31篇
  2019年   42篇
  2018年   93篇
  2017年   93篇
  2016年   99篇
  2015年   99篇
  2014年   105篇
  2013年   248篇
  2012年   170篇
  2011年   211篇
  2010年   159篇
  2009年   172篇
  2008年   189篇
  2007年   216篇
  2006年   213篇
  2005年   155篇
  2004年   115篇
  2003年   107篇
  2002年   120篇
  2001年   67篇
  2000年   63篇
  1999年   55篇
  1998年   55篇
  1997年   76篇
  1996年   51篇
  1995年   59篇
  1994年   57篇
  1993年   31篇
  1992年   34篇
  1991年   25篇
  1990年   26篇
  1989年   11篇
  1988年   16篇
  1987年   15篇
  1986年   20篇
  1985年   18篇
  1984年   19篇
  1983年   21篇
  1982年   18篇
  1981年   16篇
  1980年   21篇
  1979年   21篇
  1978年   13篇
  1977年   10篇
  1965年   12篇
  1963年   10篇
  1957年   13篇
排序方式: 共有3746条查询结果,搜索用时 593 毫秒
101.
Two-year greenhouse cucumber experiments were conducted to investigate seasonal effects on fruit yield, dry matter allocation, and N uptake in a double-cropping system with different fertilizer management. Seasonal effects were much greater than fertilizer effects, and winter-spring (WS) cucumber attained higher fruit yields and N uptake than autumn-winter (AW) cucumber due to lower cumulative air temperatures during fruit maturation in the AW season. Fertilizer N application and apparent N loss under recommended N management (Nmr) decreased by 40-78% and 33-48% without yield loss compared to conventional N management (Nmt) over four growing seasons. However, there were no seasonal differences in N recommendations, taking into consideration seasonal differences in crop N demand, critical nutrient supply in the root zone and N mineralization rate.  相似文献   
102.
Pesticide mineralization and sorption were determined in 75 soil samples from 15 individually drilled holes through the vadose zone along a 28 km long transect of the Danish outwash plain. Mineralization of the phenoxyacetic acid herbicide MCPA was high both in topsoils and in most subsoils, while metribuzine and methyltriazine-amine was always low. Organic matter and soil pH was shown to be responsible for sorption of MCPA and metribuzine in the topsoils. The sorption of methyltriazine-amine in topsoil was positively correlated with clay and negatively correlated with the pH of the soil. Sorption of glyphosate was tested also high in the subsoils. One-dimensional MACRO modeling of the concentration of MCPA, metribuzine and methyltriazine-amine at 2 m depth calculated that the average concentration of MCPA and methyltriazine-amine in the groundwater was below the administrative limit of 0.1 μg/l in all tested profiles while metribuzine always exceeded the 0.1 μg/l threshold value.  相似文献   
103.
Bioenergy to save the world   总被引:1,自引:0,他引:1  
BACKGROUND AND AIM: Following to the 2006 climate summit, the European Union formally set the goal of limiting global warming to 2 degrees Celsius. But even today, climate change is already affecting people and ecosystems. Examples are melting glaciers and polar ice, reports about thawing permafrost areas, dying coral reefs, rising sea levels, changing ecosystems and fatal heat periods. Within the last 150 years, CO2 levels rose from 280 ppm to currently over 400 ppm. If we continue on our present course, CO2 equivalent levels could approach 600 ppm by 2035. However, if CO2 levels are not stabilized at the 450-550 ppm level, the consequences could be quite severe. Hence, if we do not act now, the opportunity to stabilise at even 550 ppm is likely to slip away. Long-term stabilisation will require that CO2 emissions ultimately be reduced to more than 80% below current levels. This will require major changes in how we operate. RESULTS: Reducing greenhouse gases from burning fossil fuels seems to be the most promising approach to counterbalance the dramatic climate changes we would face in the near future. It is clear since the Kyoto protocol that the availability of fossil carbon resources will not match our future requirements. Furthermore, the distribution of fossil carbon sources around the globe makes them an even less reliable source in the future. We propose to screen crop and non-crop species for high biomass production and good survival on marginal soils as well as to produce mutants from the same species by chemical mutagenesis or related methods. These plants, when grown in adequate crop rotation, will provide local farming communities with biomass for the fermentation in decentralized biogas reactors, and the resulting nitrogen rich manure can be distributed on the fields to improve the soil. DISCUSSION: Such an approach will open new economic perspectives to small farmers, and provide a clever way to self sufficient and sustainable rural development. Together with the present economic reality, where energy and raw material prices have drastically increased over the last decade, they necessitate the development and the establishment of alternative concepts. CONCLUSIONS: Biotechnology is available to apply fast breeding to promising energy plant species. It is important that our valuable arable land is preserved for agriculture. The opportunity to switch from low-income agriculture to biogas production may convince small farmers to adhere to their business and by that preserve the identity of rural communities. PERSPECTIVES: Overall, biogas is a promising alternative for the future, because its resource base is widely available, and single farms or small local cooperatives might start biogas plant operation.  相似文献   
104.
BACKGROUND, AIM, AND SCOPE: Gene expression analyses with real-time (RT)-polymerase chain reaction (PCR) gains importance in marine monitoring. This new technique has to be compared to the classical approaches like the well known biomarker ethoxyresorufin-O-deethylase (EROD) to test their suitability for monitoring programmes. The goal of the present study is to compare EROD activity and CYP1A1 mRNA expression in the important monitoring fish species dab (Limanda limanda) and to answer the question of whether these parameters reflect the polycyclic aromatic hydrocarbon (PAH) contamination of the fish. Further on, glyceraldehyd-3-phosphate dehydrogenase (GAPDH) was investigated as a potential housekeeping gene. MATERIALS AND METHODS: Female dab were caught in the summer of 2004 in the North Sea and in the Baltic. EROD activity was determined in liver samples by a kinetic fluorimetric assay according to a standard protocol. The gene expression of CYP1A (cytochrome P450 1A) and GAPDH were determined by means of RT-PCR. Results were compared to gonado somatic index and to the concentration of PAH metabolite 1OHPyr (1-hydroxypyrene) analysed in the bile fluids of the fish, respectively. RESULTS: Dab from all stations showed a considerable individual variation in the levels of both CYP1A mRNA and EROD. Highest mean values for CYP1A mRNA and EROD were detected in the northern part of the sampling area. In contrast, the PAH metabolite 1OHPyr was found at the highest concentration in fish caught near the German coast. CYP1A mRNA and EROD showed only a minor but significant correlation (r = 0.32, p < 0.05, n = 123). 1OHPyr in bile correlated significantly (p < 0.05) with the amount of GAPDH mRNA content in the liver. DISCUSSION: The significant but low correlation of CYP1A mRNA and EROD activity on an individual basis illustrates that these two parameters are apparently not closely linked. However, maximum EROD values correspond with maximum CYP1A mRNA concentrations when station means are regarded. Because EROD and CYP1A mRNA in dab follow different physiological principles, their application will lead to related but not identical monitoring results. This should be taken into account when future marine monitoring programmes are designed. The results also indicate that PAH are not the crucial factor for CYP1A and EROD levels in dab from the off-shore areas in the North Sea. This is remarkable because the PAH metabolism is known to be CYP1A-dependent and the widely used biomarker EROD has been recommended for monitoring PAH-related effects in fish from the North Sea. Due to a correlation between GAPDH and 1OHPyr, GAPDH was not suitable as housekeeping gene for dab. CONCLUSIONS: Neither the results from EROD nor from CYP1A1 mRNA measurements in dab reflected their exposure to PAH as measured by the PAH metabolite 1OHPyr. Thus, the question arises of whether EROD or CYP1A mRNA is a suitable biomarker at all to indicate PAH exposure in dab from the open North Sea. RECOMMENDATIONS AND PERSPECTIVES: For future biological effect monitoring, it is advisable to measure more and predominately independent parameters by RT-PCR and to incorporate more components of the detoxification system.  相似文献   
105.
Bell PR  Lapointe BE  Elmetri I 《Ambio》2007,36(5):416-424
The results from the multimillion dollar Enrichment of Nutrients on Coral Reefs Experiment (ENCORE) on One Tree Island Reef (OTIR) suggest that increased nutrient loads to coral reefs will have little or no effect on the algal growth rates and, hence, on the associated effects that increased algal growth might have on the functioning and stability of coral reefs. However, a comparison of the concentrations of nutrients within the OTIR lagoon with the proposed nutrient threshold concentrations (NTC) for coral reefs suggests that all sites, including the control sites, were saturated with nutrients during ENCORE, and, hence, one would not expect to get any differences between treatments in the algal-growth related measurements. Thus, ENCORE results provide strong support for the proposed NTCs and support the ecological principle that algal productivity and, consequently, the functioning of coral reefs are sensitive to small changes in the background concentrations of nutrients. The principal conclusion of ENCORE, namely that the addition of nutrients did not cause the "pristine" OTIR to convert from coral communities to algal dominated reefs, is contrary to the fact that there was prolific macroalgal growth on the walls and crests of the experimental microatolls by the end of ENCORE.  相似文献   
106.
Haglund P 《Ambio》2007,36(6):467-474
This review provides a summary of methods for treating soils contaminated with polychlorinated aromatic compounds, especially polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Unlike many other soil pollutants, PCDD/Fs bind tightly to the soil, which severely reduces the efficiency of most aqueous treatment procedures and leaves few realistic alternatives besides the traditional containment techniques (landfill, solidification/stabilization, and in situ vitrification). Incineration has long been, and still is, the most efficient destruction technique, with a removal efficiency of >99.9999%. However, supercritical water oxidation, base-catalyzed decomposition, steam distillation, and various extraction techniques, such as solvent and liquefied gas and subcritical water extraction, may provide removal efficiencies of >95%. Many of the alternative techniques are expected to be cheaper than incineration and may therefore be attractive for moderately polluted soils. However, some of them are at an early stage of development and need to be further tested before their true potential can be assessed.  相似文献   
107.
Dated sediment cores provide an excellent way to investigate the historical input of persistent organic pollutants into the environment and to identify possible sources of pollution. The vertical distribution of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/F) and polychlorinated biphenyls (PCB) was investigated in a sediment core from Greifensee to elucidate the historical trends of PCDD/F and PCB inputs between 1848 and 1999. Concentrations of PCB and PCDD/F increased by more than one order of magnitude between 1930 and 1960. PCB and PCDD/F concentrations were 5700 ng/kg dry weight (dw) and 160 ng/kg dw, respectively, in sediments originating from the late 1930s and reached a maximum of 130,000 ng/kg dw and 2400 ng/kg dw, respectively, in the early 1960s. From 1960 on, concentrations decreased to the 1930s level by the mid 1980s. A remarkable shift in the PCDD/F pattern was observed after the early 1940s. Before 1940, the PCDD/F pattern was PCDF dominated (ratio of PCDD to PCDF=0.41+/-0.11), while the PCDD started to be the major species after the early 1940s (ratio of PCDD to PCDF=1.46+/-0.38). The temporal trends of PCB and PCDD/F correlate surprisingly well with each other. This might be due to the coincidence of two factors. The introduction of PCB on the market in the 1930s resulted in emissions due to the widespread use of these industrial chemicals. In the same time period, waste incineration became an increasingly popular way to get rid of garbage, boosting the PCDD/F emissions significantly. The rapid decline of PCDD/F and PCB concentrations in the sediment starting in the early 1960s reflects the result of better emission control techniques in thermal processes and the improvement of waste water treatment in the catchment of Greifensee.  相似文献   
108.
Analytical technology is continuously improving, developing better methods for isolating and concentrating trace compounds in environmental samples. Polycyclic and nitro musks (PNMs) are one group of emerging trace compounds detected in municipal wastewater. Differences in sample storage, preparation, and extraction methods for their measurement have led to variability in results. We analyzed 11 PNMs by GC/MS and compared the results of different storage times and extraction methods (supercritical fluid (SFE) or microwave-assisted (MAE)) for 202 samples of primary sludge, waste activated sludge (WAS), raw sludge, and aerobically/anaerobically digested biosolids collected from Canadian municipal wastewater treatment plants. Sixty-three air-dried samples were extracted by SFE, and 139 air-dried, centrifuged, or filtered samples were extracted by MAE. The mean surrogate recoveries were 89% (standard deviation (SD)=11%) for d(10)-anthracene by SFE and 88% (SD=14%) for d(10)-phenanthrene by MAE. Storage study results showed that PNM concentrations changed by a mean of 7% and 9% for primary sludge and WAS respectively after four weeks and decreased up to 25% after 13.5 months of storage in amber glass containers at -18 degrees C. Air-drying of sludge at room temperature caused losses of about 50% of PNM concentrations compared to centrifugation. The proportions of PNMs present in the liquid phase of sludge samples were less than 5% compared to proportions in the sludge solids. The most complete liquid-solid separation was achieved by filtration of frozen/thawed sludge samples, producing a liquid phase that contained less than 1% of the total musk content of the sample.  相似文献   
109.
Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria   总被引:1,自引:0,他引:1  
We present a travel-time based reactive transport model to simulate an in-situ bioremediation experiment for demonstrating enhanced bioreduction of uranium(VI). The model considers aquatic equilibrium chemistry of uranium and other groundwater constituents, uranium sorption and precipitation, and the microbial reduction of nitrate, sulfate and U(VI). Kinetic sorption/desorption of U(VI) is characterized by mass transfer between stagnant micro-pores and mobile flow zones. The model describes the succession of terminal electron accepting processes and the growth and decay of sulfate-reducing bacteria, concurrent with the enzymatic reduction of aqueous U(VI) species. The effective U(VI) reduction rate and sorption site distributions are determined by fitting the model simulation to an in-situ experiment at Oak Ridge, TN. Results show that (1) the presence of nitrate inhibits U(VI) reduction at the site; (2) the fitted effective rate of in-situ U(VI) reduction is much smaller than the values reported for laboratory experiments; (3) U(VI) sorption/desorption, which affects U(VI) bioavailability at the site, is strongly controlled by kinetics; (4) both pH and bicarbonate concentration significantly influence the sorption/desorption of U(VI), which therefore cannot be characterized by empirical isotherms; and (5) calcium-uranyl-carbonate complexes significantly influence the model performance of U(VI) reduction.  相似文献   
110.
Surface runoff is one of the most important pathways for pesticides to enter surface waters. Mathematical models are employed to characterize its spatio-temporal variability within landscapes, but they must be simple owing to the limited availability and low resolution of data at this scale. This study aimed to validate a simplified spatially-explicit model that is developed for the regional scale to calculate the runoff potential (RP). The RP is a generic indicator of the magnitude of pesticide inputs into streams via runoff. The underlying runoff model considers key environmental factors affecting runoff (precipitation, topography, land use, and soil characteristics), but predicts losses of a generic substance instead of any one pesticide. We predicted and evaluated RP for 20 small streams. RP input data were extracted from governmental databases. Pesticide measurements from a triennial study were used for validation. Measured pesticide concentrations were standardized by the applied mass per catchment and the water solubility of the relevant compounds. The maximum standardized concentration per site and year (runoff loss, RLoss) provided a generalized measure of observed pesticide inputs into the streams. Average RP explained 75% (p < 0.001) of the variance in RLoss. Our results imply that the generic indicator can give an adequate estimate of runoff inputs into small streams, wherever data of similar resolution are available. Therefore, we suggest RP for a first quick and cost-effective location of potential runoff hot spots at the landscape level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号