首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5033篇
  免费   91篇
  国内免费   48篇
安全科学   169篇
废物处理   169篇
环保管理   899篇
综合类   805篇
基础理论   1286篇
环境理论   13篇
污染及防治   1234篇
评价与监测   320篇
社会与环境   225篇
灾害及防治   52篇
  2023年   30篇
  2022年   36篇
  2021年   62篇
  2020年   42篇
  2019年   55篇
  2018年   113篇
  2017年   119篇
  2016年   125篇
  2015年   125篇
  2014年   144篇
  2013年   367篇
  2012年   228篇
  2011年   308篇
  2010年   222篇
  2009年   250篇
  2008年   265篇
  2007年   312篇
  2006年   286篇
  2005年   219篇
  2004年   177篇
  2003年   166篇
  2002年   191篇
  2001年   98篇
  2000年   85篇
  1999年   67篇
  1998年   68篇
  1997年   79篇
  1996年   61篇
  1995年   75篇
  1994年   71篇
  1993年   42篇
  1992年   47篇
  1991年   37篇
  1990年   34篇
  1989年   22篇
  1988年   31篇
  1987年   26篇
  1986年   34篇
  1985年   22篇
  1984年   27篇
  1983年   31篇
  1982年   28篇
  1981年   25篇
  1980年   25篇
  1979年   30篇
  1978年   20篇
  1977年   15篇
  1974年   13篇
  1965年   14篇
  1957年   13篇
排序方式: 共有5172条查询结果,搜索用时 15 毫秒
151.
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.  相似文献   
152.
Sea ice continues to decline across many regions of the Arctic, with remaining ice becoming increasingly younger and more dynamic. These changes alter the habitats of microbial life that live within the sea ice, which support healthy functioning of the marine ecosystem and provision of resources for human-consumption, in addition to influencing biogeochemical cycles (e.g. air–sea CO2 exchange). With the susceptibility of sea ice ecosystems to climate change, there is a pressing need to fill knowledge gaps surrounding sea ice habitats and their microbial communities. Of fundamental importance to this goal is the development of new methodologies that permit effective study of them. Based on outcomes from the DiatomARCTIC project, this paper integrates existing knowledge with case studies to provide insight on how to best document sea ice microbial communities, which contributes to the sustainable use and protection of Arctic marine and coastal ecosystems in a time of environmental change.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01658-z.  相似文献   
153.
Computer models help identify agricultural areas where P transport potential is high, but commonly used models do not simulate surface application of manures and P transport from manures to runoff. As part of an effort to model such P transport, we conducted manure slurry separation and soil infiltration experiments to determine how much slurry P infiltrates into soil after application but before rain, thus becoming less available to runoff. We applied dairy and swine slurry to soil columns and after both 24 and 96 h analyzed solids remaining on the soil surface for dry matter, total phosphorus (TP), and water-extractable inorganic (WEIP) and organic (WEOP) phosphorus. We analyzed underlying soils for Mehlich-3 and water-extractable P. We also conducted slurry separation experiments by sieving, centrifuging, and suction-filtering to determine which method could easily estimate slurry P infiltration into soils. About 20% of slurry solids and 40 to 65% of slurry TP and WEIP infiltrated into soil after application, rendering this P less available to transport in runoff. Slurry separation by suction-filtering through a screen with 0.75-mm-diameter openings was the best method to estimate this slurry P infiltration. Measured quantities of manure WEOP changed too much during experiments to estimate WEOP infiltration into soil or what separation method can approximate infiltration. Applying slurries to soils always increased soil P in the top 0 to 1 cm of soil, frequently in the 1- to 2-cm depth of soil, but rarely below 2 cm. Future research should use soils with coarser texture or large macropores, and slurry with low dry matter content (1-2%).  相似文献   
154.
Upflow reactors for riparian zone denitrification   总被引:1,自引:0,他引:1  
We used permeable reactive subsurface barriers consisting of a C source (wood particles), with very high hydraulic conductivities ( approximately 0.1-1 cm s(-1)), to provide high rates of riparian zone NO3-N removal at two field sites in an agricultural area of southwestern Ontario. At one site, a 0.73-m3 reactor containing fine wood particles was monitored for a 20-mo period and achieved a 33% reduction in mean influent NO3-N concentration of 11.5 mg L(-1) and a mean removal rate of 4.5 mg L(-1) d(-1) (0.7 g m(-2) d(-1)). At the second site, four smaller reactors (0.21 m3 each), two containing fine wood particles and two containing coarse wood particles, were monitored for a 4-mo period and were successful in attenuating mean influent NO3-N concentrations of 23.7 to 35.1 mg L(-1) by 41 to 63%. Mean reaction rates for the two coarse-particle reactors (3.2 and 7.8 mg L(-1) d(-1), or 1.5 and 3.4 g m(-2) d(-1)) were not significantly different (p > 0.2) than the rates observed in the two fine-particle reactors (5.0 and 9.9 mg L(-1) d(-1), or 1.8-3.5 g m(-2) d(-1)). A two-dimensional ground water flow model is used to illustrate how permeable reactive barriers such as these can be used to redirect ground water flow within riparian zones, potentially augmenting NO3- removal in this environment.  相似文献   
155.
Field experiments were conducted to optimize the phytoextraction of weathered p,p'-DDE (p,p'-dichlorodiphenyldichloroethylene) by Cucurbita subspecies. The effects of two soil amendments, mycorrhizae or a biosurfactant, on p,p'-DDE accumulation was determined. Also, p,p'-DDE uptake was assessed during plant growth (12, 26, 38, and 62 d), and cultivars that accumulate weathered p,p'-DDE were intercropped with cultivars known not to have that ability. Cucurbita pepo L. ssp. pepo accumulated large amounts of the contaminant, having stem bioconcentration factors, amounts of p,p'-DDE translocated, and contaminant phytoextraction that were 14, 9.9, and 5.0 times greater than C. pepo L. ssp. ovifera (L.) D.S. Decker, respectively. During 62 d, the stem BCF (bioconcentration factor) for p,p'-DDE in subspecies pepo remained constant and the total amount of contaminant accumulated was correlated with plant biomass (r(2) = 0.86). For subspecies ovifera, the stem BCF was highest at 12 d (1.5) but decreased to 0.39 by 62 d, and p,p'-DDE removal was not correlated with plant biomass. Mycorrhizal inoculation increased p,p'-DDE accumulation by both subspecies by an average 4.4 times. For subspecies pepo, mycorrhizae increased the percentage of contaminant extracted from 0.72 to 2.1%. Biosurfactant amendment also enhanced contaminant accumulation by both subspecies, although treatment reduced subspecies ovifera biomass by 60%. The biosurfactant had no effect on the biomass of subspecies pepo, increased the average contaminant concentration by 3.6-fold, and doubled the overall amount of p,p'-DDE removed from the soil. Soil amendments that enhance the mobility of weathered persistent organic pollutants will significantly increase the amount of contaminant phytoextraction by Cucurbita pepo.  相似文献   
156.
Environmental Economics and Policy Studies - Interdisciplinary scholars and policymakers in the European Union (EU) claim that increasing material productivity improves the competitiveness of...  相似文献   
157.
Coastal fisheries are a critical component of Pacific island food systems; they power village economies and provide nutritious aquatic foods. Many coastal women and men actively fishing in this region rely on multi-species fisheries, which given their extraordinary diversity are notoriously difficult to both characterize, and to manage. Understanding patterns of fishing, diversity of target species and drivers of these patterns can help define requirements for sustainable management and enhanced livelihoods. Here we use a 12-month data set of 8535 fishing trips undertaken by fishers across Malaita province, Solomon Islands, to create fisheries signatures for 13 communities based on the combination of two metrics; catch per unit effort (CPUE) and catch trophic levels. These signatures are in turn used as a framework for guiding suitable management recommendations in the context of community-based resource management. While a key proximate driver of these patterns was fishing gear (e.g. angling, nets or spearguns), market surveys and qualitative environmental information suggest that community fishing characteristics are coupled to local environmental features more than the market value of specific species they target. Our results demonstrate that even within a single island not all small-scale fisheries are equal, and effective management solutions ultimately depend on catering to the specific environmental characteristics around individual communities.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01690-z.  相似文献   
158.
Arsenic geochemistry and health   总被引:19,自引:0,他引:19  
Arsenic occurs naturally in the earth's crust and is widely distributed in the environment. Natural mineralization and activities of microorganisms enhance arsenic mobilization in the environment but human intervention has exacerbated arsenic contamination. Although arsenic is useful for industrial, agricultural, medicinal and other purposes, it exerts a toxic effect in a variety of organisms, including humans. Arsenic exposure may not only affect and disable organs of the body, especially the skin, but may also interfere with the proper functioning of the immune system. This paper, therefore, generally highlights the toxic effects of arsenic as well as its mobilization in the natural environment and possible controls. It also briefly attempts to outline the impact of arsenic on the immune system, whose alteration could lead to viral/bacterial infections.  相似文献   
159.
Thallium: a review of public health and environmental concerns   总被引:22,自引:0,他引:22  
Thallium (Tl) is a rare but widely dispersed element. All forms of thallium are soluble enough to be toxic to living organisms. Thallium is more toxic to humans than mercury, cadmium, lead, copper or zinc and has been responsible for many accidental, occupational, deliberate, and therapeutic poisonings since its discovery in 1861. Its chemical behavior resembles the heavy metals (lead, gold and silver) on the one hand and the alkali metals (K, Rb, Cs) on the other. It occurs almost exclusively in natural waters as monovalent thallous cation. The solubility of thallous compounds is relatively high so that monovalent thallium is readily transported through aqueous routes into the environment. Tl can be transferred from soils to crops readily and accrues in food crops. The fascinating chemistry and high toxicity potential make thallium and its compounds of particular scientific interest and environmental concern. Thallium was detected in base-metal mining effluents. The conventional removal of heavy metals from wastewater has little effect on thallium. In this review, various treatment options and removal technologies are enumerated in order to protect the environment from thallium toxicity.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号