首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   3篇
  国内免费   2篇
安全科学   2篇
废物处理   15篇
环保管理   15篇
综合类   19篇
基础理论   17篇
污染及防治   35篇
评价与监测   15篇
社会与环境   4篇
灾害及防治   2篇
  2023年   3篇
  2022年   9篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   12篇
  2012年   7篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   9篇
  2005年   5篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  1996年   1篇
  1979年   1篇
  1973年   1篇
  1971年   1篇
  1961年   1篇
  1958年   1篇
排序方式: 共有124条查询结果,搜索用时 156 毫秒
21.
22.
Biocomposites were made by a novel high volume processing technique named biocomposite sheet molding compound panel (BCSMCP) manufacturing process. This process design was inspired by the commercial glass fiber–polyester resin composite fabrication method called sheet molding compounding (SMC). This process yields continuous production of biocomposites on a large scale, and thus can be easily adopted in industries. A unique fiber dispersion method, which enabled uniform distribution of natural fibers, was used in this process. Consistency of the process was tested by evaluating the repeatability of the resultant materials mechanical properties. The low cost biocomposites produced as a result of the processing will be used for various panel applications such as housing and transportation. The molded samples were tested for various mechanical and thermal properties, in accordance with ASTM procedures. The biocomposites were made with various natural fibers including, big blue stem grass, jute, and industrial hemp. By combining different natural fibers in varying mass fractions, hybrid biocomposites were made using this process. Grass fiber reinforced polyester biocomposites processed by the SMC line showed very promising results.  相似文献   
23.
Increased environmental awareness and interest in long-term sustainability of material resources has motivated considerable advancements in composite materials made from natural fibers and resins, or biocomposites. In spite of these developments the lower stiffness and strength of biocomposites has limited their applications to non-load-bearing components. This paper presents an overview of a study aimed at showing that the shortcomings of biocomposites can be overcome through hybrid material designs and efficient structural configurations to make them suitable for load bearing structural components. Hybrid blends of natural and synthetic fibers can significantly improve the characteristics of biocomposites with minimal cost and environmental impact, and hierarchical cellular designs can maximize material efficiency in structural components. Periodic and hierarchical cellular plate designs made from natural fibers and unsaturated polyester resin were evaluated experimentally and analytically. Stiffness, strength, and dimensional stability of all-biocomposite and hybrid natural–synthetic material systems were evaluated through material tests while structural performance of cellular plate designs was assessed through flexural tests on laboratory-scale samples. The experimental results were correlated with analytical models for short-fiber composites and cellular structures. The results showed that biocomposites have adequate short-term performance and that they can efficiently compete with housing panels made from conventional structural materials.  相似文献   
24.
Catalyst recovery studies were conducted for gasified chars produced from steam gasification of Illinois #6 coal catalyzed with two different catalyst systems. A ternary (43.5 mol% Li2CO3-31.5 mol% Na2COr-25 mol% K2CO3) and a binary (29 mol% Na2CO3-71 mol% K2CO3) eutectic catalyst system were used for gasifying coal. Various extraction schemes, such as water extraction, H2SO4 extraction, and acetic acid extraction, were evaluated with respect to their extraction efficiencies. Effects of major process variables, such as solvent-to-char ratio, mixing time, temperature, and concentration, on the extraction efficiency were evaluated. A process schematic for the entire catalyst recovery, regeneration, and recycle scheme was developed and the preliminary process economics were determined based on these extraction schemes. H2SO4 extraction was found to be the most desirable. It also turned out to be more attractive than a once-through throwaway system.  相似文献   
25.
The word “textile” means to weave and was taken from the Latin word “texere.” Nowadays, textiles not only fulfill humankind's basic necessity for clothing, they also allow individuals to make fashion statements. As one of the oldest industries, the textile industry occupies a unique place in India. It is responsible for 14% of the total industrial manufacture in India. However, the textile industry is also considered to be one of the biggest threats to the environment. Pretreatment, dyeing, printing, and finishing operations are among the various stages of the industrial textile manufacturing process. These fabrication operations not only utilize huge quantities of power and water, they also generate considerable amounts of waste. The textile industry utilizes a number of dyes, chemicals, and other materials to impart the required qualities to the fabrics. These operations produce a significant amount of effluents. The quality of effluents is such that they cannot be put to other uses, and they can create environmental problems if they are disposed of without appropriate treatment. This review discusses different textile processing stages, pollution problems associated with these stages, and their eco‐friendly alternatives. Textile wet processing is described in detail, as it is the key process in the industry and it also generates the greatest amount of pollutants in textile processing. The environmental impact of textile effluents is discussed, as textile effluents not only impose negative effects on the quality of water and soil, they also imperil plant and animal health. In this paper, various methods for treating textile effluents are described. Discussion of physical, chemical, biological, and advanced treatment technologies of effluent treatment are included in this paper.  相似文献   
26.

Climate change issues are calling for advanced methods to produce materials and fuels in a carbon–neutral and circular way. For instance, biomass pyrolysis has been intensely investigated during the last years. Here we review the pyrolysis of algal and lignocellulosic biomass with focus on pyrolysis products and mechanisms, oil upgrading, combining pyrolysis and anaerobic digestion, economy, and life cycle assessment. Products include oil, gas, and biochar. Upgrading techniques comprise hot vapor filtration, solvent addition, emulsification, esterification and transesterification, hydrotreatment, steam reforming, and the use of supercritical fluids. We examined the economic viability in terms of profitability, internal rate of return, return on investment, carbon removal service, product pricing, and net present value. We also reviewed 20 recent studies of life cycle assessment. We found that the pyrolysis method highly influenced product yield, ranging from 9.07 to 40.59% for oil, from 10.1 to 41.25% for biochar, and from 11.93 to 28.16% for syngas. Feedstock type, pyrolytic temperature, heating rate, and reaction retention time were the main factors controlling the distribution of pyrolysis products. Pyrolysis mechanisms include bond breaking, cracking, polymerization and re-polymerization, and fragmentation. Biochar from residual forestry could sequester 2.74 tons of carbon dioxide equivalent per ton biochar when applied to the soil and has thus the potential to remove 0.2–2.75 gigatons of atmospheric carbon dioxide annually. The generation of biochar and bio-oil from the pyrolysis process is estimated to be economically feasible.

  相似文献   
27.
Environmental Science and Pollution Research - Existence of pharmaceutical residues in water has endangered environmental pollution worldwide, which makes it ineludible to develop prospective...  相似文献   
28.
In the present investigation, hepatotoxic effect of a commercially available insecticide formulation of dicofol (Colonel–S® 18.5% emulsified concentrate) was studied in the developing chick embryo. Fertilized eggs of Gallus domesticus were immersed in three different dose concentrations, i.e. 250, 500, and 1000 mg L?1 of Colonel–S on “0” and fourth days of incubation for 60 min at 37 °C and incubated till embryonic day 16. Severe histopathological cellular lesions, such as extensive cell degeneration and necrosis with enlarged blood sinusoids, cytoplasmic vacuolization, and leucocyte infiltrations with congestion or dilation of central vein, appeared in dose-depended manner. Dicofol treatment also caused significant decrease in the levels of total protein, glycogen, and glutathione content and an increase in alkaline phosphatase activity of embryonic liver, whereas glutamic pyruvic transaminase activity showed mixed response.  相似文献   
29.
Handmade paper and cardboard industries are involved in processing of cellulosic and ligno-cellulosic substances for making paper by hand or simple machinery. In the present study solid sludge and effluent of both cardboard and handmade paper industries was collected for developing a mushroom cultivation technique to achieve zero waste discharges. Findings of present research work reveals that when 50% paper industries waste is used by mixing with 50% (w/w) wheat straw, significant increase (96.38%) in biological efficiency over control of wheat straw was observed. Further, cultivated basidiocarps showed normal morphology of stipe and pileus. Cross section of lamellae did not show any abnormality in the attachment of basidiospores, hymenal trama and basidium. No toxicity was found when fruiting bodies were tested chemically.  相似文献   
30.
In India, groundwater assessment units are classified as overexploited areas, critical areas, semi-critical, or safe areas based on the stage of groundwater development and long-term water level trends. Intuitively, in the safe units, wells are expected to function and have good yields. Besides, in the safe units, new wells are expected to be successful. Conversely, the expectation of a successful well or wells with good yields is much lesser in the overexploited units. However, when these expectations are not met in the field, doubts are raised about the quality of assessment and its usefulness, and there is outright distrust on the agencies assessing groundwater resource by the common man as well as on the planners, administrators, and the politicians. Therefore, there is a need to present the results in a way that does not create confusion. One of the methods is to combine the assessment results with aquifer characters using geographic information system (GIS); when this is done, a whole set of newer classes emerge, which can be mapped. These classes are termed as groundwater typologies in this study. Each typology has some characteristics or traits in common, which include basic aquifer character as well as the stage of groundwater development. Thus, a class may be safe, but if the aquifer is poor, then it is separated from a class that is safe and where the aquifer is good and so on. In Andhra Pradesh, which is taken as the case study for this purpose, eight main typologies emerged, and two of these main typologies were further divided into four subtypologies each. This new way of understanding the pattern of groundwater abstraction (using GIS) has a better visual impact. Groundwater typologies are found to be much more rational and useful in developing management strategies, rather than simple listing as overexploited areas, critical areas, semi-critical areas, and safe areas as is commonly done. The typologies so delineated indicate on the map (or table) that balanced usable groundwater is in between 5 and 6 bcm/a as against the estimated balance of 20.5 bcm/a, and it is largely in poor hard rock type of aquifers, which occupy about a third of the area of the state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号