首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   981篇
  免费   193篇
  国内免费   373篇
安全科学   161篇
废物处理   13篇
环保管理   75篇
综合类   902篇
基础理论   136篇
污染及防治   27篇
评价与监测   78篇
社会与环境   103篇
灾害及防治   52篇
  2024年   7篇
  2023年   27篇
  2022年   94篇
  2021年   83篇
  2020年   101篇
  2019年   55篇
  2018年   63篇
  2017年   74篇
  2016年   63篇
  2015年   67篇
  2014年   40篇
  2013年   85篇
  2012年   99篇
  2011年   91篇
  2010年   82篇
  2009年   75篇
  2008年   70篇
  2007年   76篇
  2006年   84篇
  2005年   64篇
  2004年   39篇
  2003年   21篇
  2002年   15篇
  2001年   24篇
  2000年   27篇
  1999年   11篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
排序方式: 共有1547条查询结果,搜索用时 15 毫秒
901.
关于As和Hg在环境中的形态及其监测分析   总被引:7,自引:0,他引:7  
叙述了水中重金属形态分析的含义及形态分析工作进展情况,并以Hg、As在环境中的存在形态、动态变化及其监测分析为例,说明随着新仪器的开发研制及前处理技术的发展,现代化的分离技术和检测手段相结合已成为重金属形态分析的主要方法.  相似文献   
902.
本研究通过对污泥热解碳化,并负载传统的混凝剂制成改性污泥基吸附剂(Modified Sludge-Based Adsorbents, MSBAs),用来深度处理超短污泥龄活性污泥工艺出水有机物(COD).同时,以总有机物(TCOD)和溶解性有机物(SCOD)去除率及处理前后各类有机物组分特征变化为指标,评价MSBAs深度处理出水中有机物的效果及处理后污水中有机物的潜在风险.结果表明,改性后的污泥基吸附剂均有较好的有机物吸附效果,TCOD的去除效率可达到32.6%以上,其中,Fe2(SO4)3改性制备的污泥基吸附剂对有机物的去除能力最大,TCOD最大的去除效率为42.5%,其中,SCOD最大的去除效率为44.1%.有机物特征分析结果显示,4种MSBAs对污水中疏水酸性有机物(HPO-A)有较好的去除效果,且处理后污水中有机物芳香构造化程度增加,稳定性增加,污水消毒副产物的产生可能性大大降低.  相似文献   
903.
关于火电厂验收存在的问题分析   总被引:1,自引:1,他引:0  
对火电厂中以煤、天然气、油或焦油、秸秆为原料时验收监测应注意的问题进行了分析和探讨。重点提出了烟气脱硫、Hg、As、氟化物的污染以及多环芳烃、二的产生和以后环评、环评批复及验收监测中应注意的问题。  相似文献   
904.
为深入了解邢台市PM_(10)、PM_(2.5)浓度变化情况和气流后向轨迹,对邢台市2013—2016年环境大气颗粒污染物监测数据进行了分析,同时利用HYSPLIT模型计算出逐日72 h后向气流轨迹。结果表明:邢台市的PM_(10)和PM_(2.5)质量浓度在2013—2016年间呈逐年下降趋势,PM_(10)和PM_(2.5)质量浓度高值出现在冬季(296μg/m~3和192μg/m~3),最低值出现在夏季(140μg/m~3和80μg/m~3),PM_(10)和PM_(2.5)质量浓度在日变化上均呈"双峰双谷"型分布;后向轨迹的季节聚类分析表明,春季大气颗粒物污染以粒径2.5~10μm的颗粒污染物为主,夏季、秋季和冬季的大气颗粒物污染以PM_(2.5)为主;逐日聚类分析表明,在路径为西北偏西向的、途经多个沙源地的气流影响下,邢台市的PM_(10)和PM_(2.5)质量浓度处于一个相对高值;来源于偏南向的气流由于化合反应,污染物积聚导致PM_(10)、PM_(2.5)质量浓度也处于相对高值;在来源于西北向和偏北向的、水汽含量相对较低的气流影响下,邢台市的PM_(10)、PM_(2.5)质量浓度出现一个明显的下降。  相似文献   
905.
生态系统管理中生态环境评价的关键问题   总被引:3,自引:3,他引:0  
阐述了生态环境评价和生态系统管理的内涵以及两者之间的关系,对国内外生态系统管理中生态评价的类型和特征进行了总结,并分析了生态系统管理中生态评价的关键问题,即为生态系统管理者提供有效的决策支持信息。因此,为生态系统管理服务的生态环境评价中,管理者的配合和支持起着非常重要的作用;评价方法必须科学、可行;评价数据必须准确可靠,并且能够连续获得;评价结论尽量真实反映生态状况。  相似文献   
906.
在高铁现场监测数据基础上,根据环境监测经验确定了5种常见暴露声级测试的测量时间段,分别计算其暴露声级并对其结果进行分析讨论。研究结果表明:采样起止时间不同对暴露声级监测的影响误差在1 dB之内,并且在暴露声级测试时,建议选择T5对应的时间段,该结论为科学合理地环境监测提供了数据支撑。  相似文献   
907.
本文通过现场实测,获取了在不同行驶工况下深圳市横龙山隧道内CO浓度分布情况.结果表明,在堵车、缓行及正常行驶3种情况下,隧道入口、隧道中及隧道出口的CO浓度均逐渐升高,堵车时隧道内CO浓度最高,正常行驶时的浓度最低.采用环保部机动车排污监控中心关于在用车综合排放因子的研究成果中第3阶段汽车尾气排放标准计算隧道内CO浓度,结果与实测数据相符,CO在纵向全射流通风隧道内扩散规律符合一维纵向空气质量扩散方程.  相似文献   
908.
石化化工行业是高耗能高排放行业之一,约占工业部门碳排放比例的10%,研究石化化工行业碳排放达峰路径不仅能推动工业部门尽早实现达峰,同时也为石化化工行业加快绿色低碳转型指明方向. 基于中国统计年鉴、行业协会、企业碳核查等多来源数据,在分析历史排放趋势的基础上,识别能源集中度高的重点行业和产品,采用情景分析法针对石油和天然气开采业、石油煤炭及其他燃料加工业、化学原料及化学制品制造业三大子行业中的炼油、乙烯、丙烯、对二甲苯和合成氨等重点产品,预测其基准情景和控排情景下的重点产品产量和碳排放强度,以及石化化工行业2021—2035年二氧化碳排放趋势. 石化化工行业在基准情景下排放量无法实现2030年前达峰,控排情景下将于2030年达峰,峰值为17.3×108 t. 通过能源结构调整、节能和低碳技术改造、低碳循环及高效利用等途径可以实现行业减排,与BAU(仅考虑石化产品产量变化,不考虑产品结构、单位产品能耗变化)情景相比,减排贡献最大的路径是化石能源利用清洁化改造,2030年相对BAU减排1.19×108 t,贡献率约44%;其次是加大节能和低碳技术改造力度和资源循环及高效利用,减排量分别为0.8×108和0.6×108 t,减排贡献率分别达到29%和22%.   相似文献   
909.
目的预测有限尺寸加筋平板结构宽频范围内的隔声特性,指导飞行器结构声学设计。方法基于混合FE-SEA方法,对单向加筋平板结构开展宽频隔声预计。同时,在标准声学试验室对其进行隔声测试,并将FE-SEA法预计结果与测试结果、SEA方法计算结果进行对比分析。结果与SEA法相比,混合FE-SEA方法在50 Hz~10 kHz频带内的预计结果与试验结果更为吻合,其更适用于宽频隔声预计;在400 Hz~10 kHz的中高频段内,FE-SEA方法预计结果与试验结果基本相同;在50 Hz~400 Hz的低频段内,FE-SEA方法预计结果略高于试验结果,且随频率降低,偏差会逐渐增大。结论进行加筋板结构声学设计时,为了获得精确的宽频隔声预计结果,可首先选用FE-SEA方法。FE-SEA方法预计结果在中高频段可直接使用,在低频段仅能作为参考,使用时应当进行修正。  相似文献   
910.
为了强化煤化工废水中高浓度氨氮(500~7000mg/L)的吹脱去除效率,进一步减少投碱量,制备了一种纳米TiO2/ZJ-01复合相促脱剂,并对其稳定性、促脱效率及强化机理进行了研究.结果表明,在有机组分质量分数6.0%,5nm TiO2固含量0.4%,超声分散30min时,纳米TiO2/ZJ-01复合相促脱剂性价比最好.在纳米TiO2/ZJ-01复合相促脱剂投加量为7.5mL/L时,氨氮吹脱率便可以达到95.14%,且在任何pH值条件下投加纳米TiO2/ZJ-01复合相促脱剂,氨氮吹脱率均能提高17.02%~32.46%.与直接吹脱法相比,投加纳米TiO2/ZJ-01复合相促脱剂吹脱40min,原水pH=10时的氨氮吹脱率便已高于直接吹脱法pH=11.5时的氨氮吹脱率,极大降低了碱耗量.进一步对纳米TiO2/ZJ-01复合相促脱剂作用机理研究发现,纳米TiO2/ZJ-01复合相促脱剂能极大的降低气液相间表面张力,从而降低传质过程中的液膜阻力,减小气泡尺寸,增大传质接触面积,加快氨气的逸出;同时,在吹脱过程中纳米TiO2/ZJ-01复合相促脱剂能够增强界面湍动及对流现象,加快气泡液膜表面部分更新,减少有效传质边界层厚度,从而降低氨氮传质阻力,强化了气液间传质的进行.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号