China contributes 23 % of global carbon emissions, of which 26 % originate from the household sector. Due to vast variations in both climatic conditions and the affordability and accessibility of fuels, household carbon emissions (HCEs) differ significantly across China. This study compares HCEs (per person) from urban and rural regions in northern China with their counterparts in southern China. Annual macroeconomic data for the study period 2005 to 2012 were obtained from Chinese government sources, whereas the direct HCEs for different types of fossil fuels were obtained using the IPCC reference approach, and indirect HCEs were calculated by input-output analysis. Results suggest that HCEs from urban areas are higher than those from rural areas. Regardless of the regions, there is a similarity in per person HCEs in urban areas, but the rural areas of northern China had significantly higher HCEs than those from southern China. The reasons for the similarity between urban areas and differences between rural areas and the percentage share of direct and indirect HCEs from different sources are discussed. Similarly, the reasons and solutions to why decarbonising policies are working in urban areas but not in rural areas are discussed.
Laboratorial scale experiments were performed to evaluate the efficacy of a washing process using the combination of methyl-β-cyclodextrin (MCD) and tea saponin (TS) for simultaneous desorption of hydrophobic organic contaminants (HOCs) and heavy metals from an electronic waste (e-waste) site. Ultrasonically aided mixing of the field contaminated soil with a combination of MCD and TS solutions simultaneously mobilizes most of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and the analyte metal (Pb, Cu, and Ni) burdens. It is found that 15 g/L MCD and 10 g/L TS is an efficient reagent combination reconciling extraction performance and reagent costs. Under these conditions, the removal efficiencies of HOCs and heavy metals are 93.5 and 91.2 %, respectively, after 2 cycles of 60-min ultrasound-assisted washing cycles. By contrast, 86.3 % of HOCs and 88.4 % of metals are removed from the soil in the absence of ultrasound after 3 cycles of 120-min washing. The ultrasound-assisted soil washing could generate high removal efficiency and decrease the operating time significantly. Finally, the feasibility of regenerating and reusing the spent washing solution in extracting pollutants from the soil is also demonstrated. By application of this integrated technology, it is possible to recycle the washing solution for a purpose to reduce the consumption of surfactant solutions. Collectively, it has provided an effective and economic treatment of e-waste-polluted soil.
Many epidemiologic studies have observed, in different contexts, a slight short-term relationship between particles in air and cardiopulmonary mortality, even when air quality standards were respected. The causality of this relationship is important to public health because of the number of people exposed. Our aim was to make a critical assessment of the arguments used in 15 reviews of published studies. We explain the importance of distinguishing validity from causality, and we systematically analyze the various criteria of judgment within the context of ecologic time studies. Our conclusion is that the observed relationship is valid and that most of the causality criteria are respected. It is hoped that the level of exposure of populations to these particles be reduced. In Europe, acting at the root of the problem, in particular on diesel emissions, will also enable the reduction of levels of other pollutants that can have an impact on health. In the United States, the situation is more complicated, as particles are mainly secondary. It is also essential to continue with research to become better acquainted with the determinants of personal global exposures and to better understand the toxic role of the various physicochemical factors of the particles. 相似文献
The structure and diversity of the Archaea collected from prawn farm sediment were investigated for the first time. A partial 16S ribosomal DNA library was constructed with Archaea-specific primers. Subsequently, 80 randomly selected archaeal clones from the library were analyzed by restriction fragment length polymorphism (RFLP), and resulted in 50 different RFLP patterns. Sequence analysis of representatives from each unique RFLP type revealed high diversity in the archaeal populations, and the majority of archaeal clones were either members of novel lineages or most closely related to uncultured clones. In the phylogenetic analysis, the archaeal clones could be grouped into discrete phylogenetic lineages within the two kingdoms Crenarchaeota and Euryarchaeota. Euryarchaeota dominated in our archaeal library, with up to 72.2% of the total clones, and Crenarchaeota represented 27.8%. Of all the Euryarchaeota clones, three clones (5.6%) were affiliated with Methanosarcinales, four clones (7.4%) were related to Methanomicrobiales, three clones (5.6%) were related to Halobacterium (with 93% similarity), and the remaining clones (81.5%) were related to those uncultured Euryarchaeota in the aquatic sediment ecosystem. None of the crenarchaeal clones were associated with any known cultured lineages. The selective dispersal of the archaeal population indicates that their ecological niches are associated with environmental characteristics. Novel phylotypes of Archaea would expand our understanding of the genetic diversity of Archaea in aquatic sediment systems and would be significant in the phylogenetic study of Archaea.Communicated by O. Kinne, Oldendorf/Luhe 相似文献