首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25416篇
  免费   234篇
  国内免费   120篇
安全科学   520篇
废物处理   1133篇
环保管理   3430篇
综合类   3827篇
基础理论   7513篇
环境理论   10篇
污染及防治   5855篇
评价与监测   1630篇
社会与环境   1720篇
灾害及防治   132篇
  2021年   136篇
  2019年   127篇
  2018年   758篇
  2017年   734篇
  2016年   812篇
  2015年   349篇
  2014年   472篇
  2013年   1598篇
  2012年   757篇
  2011年   1472篇
  2010年   1058篇
  2009年   1081篇
  2008年   1390篇
  2007年   1636篇
  2006年   765篇
  2005年   749篇
  2004年   675篇
  2003年   714篇
  2002年   727篇
  2001年   776篇
  2000年   582篇
  1999年   329篇
  1998年   281篇
  1997年   278篇
  1996年   279篇
  1995年   331篇
  1994年   302篇
  1993年   284篇
  1992年   277篇
  1991年   278篇
  1990年   294篇
  1989年   277篇
  1988年   249篇
  1987年   240篇
  1986年   222篇
  1985年   200篇
  1984年   265篇
  1983年   213篇
  1982年   271篇
  1981年   219篇
  1980年   184篇
  1979年   201篇
  1978年   184篇
  1977年   153篇
  1976年   138篇
  1975年   143篇
  1974年   159篇
  1973年   162篇
  1972年   148篇
  1971年   146篇
排序方式: 共有10000条查询结果,搜索用时 672 毫秒
891.
Water soluble organic nitrogen (WSON) compounds are ubiquitous in precipitation and in the planetary boundary layer, and therefore are a potential source of bioavailable reactive nitrogen. This paper examines weekly rain data over a period of 22 months from June 2005 to March 2007 collected in 2 types of rain collector (bulk deposition and “dry + wet” deposition) located in a semi-rural area 15 km southwest of Edinburgh, UK (N55°51′44″, W3°12′19″). Bulk deposition collectors are denoted in this paper as “standard rain gauges”, and they are the design used in the UK national network for monitoring precipitation composition. “Dry + wet” deposition collectors are flushing rain gauges and they are equipped with a rain detector (conductivity array), a spray nozzle, a 2-way valve and two independent bottles to collect funnel washings (dry deposition) and true wet deposition. On average, for the 27 weekly samples with 3 valid replicates for the 2 types of collectors, dissolved organic nitrogen (DON) represented 23% of the total dissolved nitrogen (TDN) in bulk deposition. Dry deposition of particles and gas on the funnel surface, rather than rain, contributed over half of all N-containing species (inorganic and organic). Some discrepancies were found between bulk rain gauges and flushing rain gauges, for deposition of both TDN and DON, suggesting biological conversion and loss of inorganic N in the flushing samplers.  相似文献   
892.
Ambient carbonaceous material collected on quartz filters is prone to measurement artifacts due to material gained or lost during post-sampling field latency, shipping, and storage. In seventeen sampling events over a one year period, ambient PM2.5 aerosols were collected on quartz filters (without denuders) and subjected to various filter treatments to assess the potential for and extent of artifacts. The filter treatments simulated post-sampling environments that filters may be exposed to and included: storage at 40 °C for up to 96 h, storage at ?16 °C for 48 h, and storage at room temperature (~21 °C) for 48 h. Carbon mass on the filters was measured using a thermal-optical method. The total carbon (TC), total organic carbon (TOC) and total elemental carbon (TEC) as well as carbon thermal fraction masses were obtained. Statistical analyses were performed to identify significant differences in carbon fraction concentrations between filters analyzed immediately after sampling and after being subjected to treatment.TOC and TC concentrations decreased by on average 15 ± 5% and 10 ± 4%, respectively, for filters maintained at 40 °C for 96 h but did not change for filters stored at room temperature or frozen for 48 h. TEC did not change for any of the filter treatments. The mass concentration for the organic carbon thermal fraction that evolves at the lowest temperature step (OC1) decreased with increasing storage time at 40 °C with average losses of 70 ± 7% after 96 h. Therefore, OC1 is not a stable measurement due to post-sampling conditions that may be encountered. This work demonstrates that TOC and TC can have substantial measurement artifacts on filters subjected to field latency and other non-temperature controlled post-sampling handling, compared to the carbon loadings on the filter at the end of the sampling period.  相似文献   
893.
Organic wastes are considered to be a source for the potentially pathogenic microorganisms found in surface and sub-surface water resources. Following their release from the organic waste matrix, bacteria often infiltrate into soil and may be transported to significant depths contaminating aquifers. We investigated the influence of soil texture and structure and most importantly the organic waste properties on the transport and filtration coefficients of Escherichia coli and total bacteria in undisturbed soil columns. Intact soil columns (diameter 16 cm and height 25 cm) were collected from two soils: sandy clay loam (SCL) and loamy sand (LS) in Hamadan, western Iran. The cores were amended with cow manure, poultry manure and sewage sludge at a rate of 10 Mg ha(-1) (dry basis). The amended soil cores were leached at a steady-state flux of 4.8 cm h(-1) (i.e. 0.12 of saturated hydraulic conductivity of the SCL) to a total volume of up to 4 times the pore volume of the columns. The influent (C(0)) and effluent (C) were sampled at similar time intervals during the experiments and bacterial concentrations were measured by the plate count method. Cumulative numbers of the leached bacteria, filtration coefficient (lambda(f)), and relative adsorption index (S(R)) were calculated. The preferential pathways and stable structure of the SCL facilitated the rapid transport and early appearance of the bacteria in the effluent. The LS filtered more bacteria when compared with the SCL. The effluent contamination of poultry manure-treated columns was greater than the cow manure- and sewage sludge-treated ones. The difference between cow manure and sewage sludge was negligible. The lambda(f) and S(R) values for E. coli and total bacteria were greater in the LS than in the SCL. This indicates a predominant role for the physical pore-obstruction filtration mechanisms as present in the poorly structured LS vs. the retention at adsorptive sites (chemical filtration) more likely in the better structured SCL. While the results confirmed the significant role of soil structure and preferential (macroporous) pathways, manure type was proven to have a major role in determining the maximum penetration risk of bacteria by governing filtration of bacteria. Thus while the numbers of bacteria in waste may be of significance for shallow aquifers, the type of waste may determine the risk for microbial contamination of deep aquifers.  相似文献   
894.
Strategies for beneficial use of biosolids in New Zealand and elsewhere are currently focused primarily on land application. The long-term success of these and other strategies is dependent not only on technical factors, but also on their environmental, economic, social and cultural sustainability. This paper briefly reviews the situation with respect to biosolids management in New Zealand, where land application is not yet widespread; the rise in public opposition to land application in the United States; and the biosolids industry's approach to public engagement. We argue that, at least until recently, the industry has misinterpreted the nature and meaning of public opposition and thus substituted public relations for public engagement. We argue that genuine public engagement is necessary and that its purpose cannot be to gain public acceptance for an already-decided-upon strategy. It therefore calls for humility among biosolids managers, including a willingness to open up the framing of 'the problem', to acknowledge areas of uncertainty, and to recognise the role of values in 'technical' decision-making. We then present and analyse an example of the use of the scenario workshop process for public participation in biosolids management policy in Christchurch, New Zealand, and conclude that scenario workshops and related methods represent an opportunity to enhance sustainable waste management when certain conditions are met.  相似文献   
895.
Using a methodology derived from Economics, the Lorenz Curve and Gini Coefficient are introduced as tools for investigating and quantifying seasonal variability in environmental radon gas concentration. While the Lorenz Curve presents a graphical view of the cumulative exposure during the course of the time-frame of interest, typically one year, the Gini Coefficient distils this data still further, to provide a single-parameter measure of temporal clustering. Using the assumption that domestic indoor radon concentrations show annual cyclic behaviour, generally higher in the winter months than in summer, published data on seasonal variability of domestic radon concentration levels, in various areas of the UK, Europe, Asia and North America, are analysed. The results demonstrate significantly different annual variation profiles between domestic radon concentrations in different countries and between regions within a country, highlighting the need for caution in ascribing seasonal correction factors to extended geographical areas. The underlying geography, geology and meteorology of a region have defining influences on the seasonal variability of domestic radon concentration, and some examples of potential associations between the Gini Coefficient and regional geological and geographical characteristics are proposed. Similar differences in annual variation profiles are found for soil-gas radon measured as a function of depth at a common site, and among the activity levels of certain radon progeny species, specifically 214Bi deposited preferentially in human body-fat by decay of inhaled radon gas. Conclusions on the association between these observed measures of variation and potential underlying defining parameters are presented.  相似文献   
896.
The Value of Linking Mitigation and Adaptation: A Case Study of Bangladesh   总被引:1,自引:0,他引:1  
There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.  相似文献   
897.
Prediction of the Fate and Transport Processes of Atrazine in a Reservoir   总被引:1,自引:0,他引:1  
The fate and transport processes of a toxic chemical such as atrazine, an herbicide, in a reservoir are significantly influenced by hydrodynamic regimes of the reservoir. The two-dimensional (2D) laterally-integrated hydrodynamics and mass transport model, CE-QUAL-W2, was enhanced by incorporating a submodel for toxic contaminants and applied to Saylorville Reservoir, Iowa. The submodel describes the physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. The simulation results from the enhanced 2D reservoir model were validated by measured temperatures and atrazine concentrations in the reservoir. Although a strong thermal stratification was not identified from both observed and predicted water temperatures, the spatial variation of atrazine concentrations was largely affected by seasonal flow circulation patterns in the reservoir. In particular, the results showed the effect of flow circulation on spatial distribution of atrazine during summer months as the river flow formed an underflow within the reservoir and resulted in greater concentrations near the surface of the reservoir. Atrazine concentrations in the reservoir peaked around the end of May and early June. A good agreement between predicted and observed times and magnitudes of peak concentrations was obtained. The use of time-variable decay rates of atrazine led to more accurate prediction of atrazine concentrations, while the use of a constant half-life (60 days) over the entire period resulted in a 40% overestimation of peak concentrations. The results provide a better understanding of the fate and transport of atrazine in the reservoir and information useful in the development of reservoir operation strategies with respect to timing, amount, and depth of withdrawal.  相似文献   
898.
Understanding how setting attributes influence the nature of the visitor experience is crucial to effective recreation management. Highly influential attributes are useful indicators to monitor within a planning framework, such as Limits of Acceptable Change. This study sought to identify the setting attributes perceived to have the most profound effect on the ability to have “a real wilderness experience” and to assess the degree to which attribute importance varied with situational context and visitor characteristics. To this end, exiting hikers were surveyed at moderate and very high use trailheads in Alpine Lakes Wilderness, WA (USA), and Three Sisters Wilderness, OR (USA). They were asked about the degree to which encountering varying levels of different setting attributes would add to or detract from their experience. Attributes with the largest range of effect on experience, based on evaluations of different levels, were considered most important. The most influential attributes were litter and several types of campsite interaction—people walking through camp and number of other groups camping close by. The perceived importance of setting attributes did not vary much between wilderness locations with substantially different use levels, suggesting that conclusions are robust and generalizable across wilderness areas. There also was little difference in the perceptions of day and overnight visitors. In contrast, we found substantial variation in the perceived importance of setting attributes with variation in wilderness experience, knowledge, attachment, and motivation. Our results validate the emphasis of many wilderness management plans on indicators of social interaction, such as number of encounters.  相似文献   
899.
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65–85% and sedimentation by 58–69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.  相似文献   
900.
A need exists to improve the utilization of manure nutrients by minimizing NH3 emissions from land application of manure. Management strategies to reduce NH3 emissions are available; however, few have been validated under Canadian conditions. A well tested and accurate simulation model, however, can help overcome this challenge by determining appropriate management strategies for a given set of field conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号