首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   0篇
环保管理   10篇
综合类   3篇
基础理论   85篇
灾害及防治   4篇
  2014年   8篇
  2013年   10篇
  2011年   6篇
  2010年   10篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   12篇
  2005年   4篇
  2004年   8篇
  2003年   1篇
  2001年   2篇
  1999年   3篇
  1997年   3篇
  1995年   5篇
  1994年   1篇
  1992年   1篇
  1991年   4篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1982年   1篇
排序方式: 共有102条查询结果,搜索用时 0 毫秒
51.
Assessing the Potential Impact of Cane Toads on Australian Snakes   总被引:6,自引:0,他引:6  
Abstract:   Cane toads ( Bufo marinus ) are large, highly toxic anurans that were introduced into Australia in 1937. Anecdotal reports suggest that the invasion of toads into an area is followed by dramatic declines in the abundance of terrestrial native frog-eating predators, but quantitative studies have been restricted to nonpredator taxa or aquatic predators and have generally reported minimal impacts. Will toads substantially affect Australian snakes? Based on geographic distributions and dietary composition, we identified 49 snake taxa as potentially at risk from toads. The impact of these feral prey also depends on the snakes' ability to survive after ingesting toad toxins. Based on decrements in locomotor (swimming) performance after ingesting toxin, we estimate the LD50 of toad toxins for 10 of the at-risk snake species. Most species exhibited a similar low ability to tolerate toad toxins. Based on head widths relative to sizes of toads, we calculate that 7 of the 10 taxa could easily ingest a fatal dose of toxin in a single meal. The exceptions were two colubrid taxa (keelbacks [  Tropidonophis mairii ] and slatey-grey snakes [  Stegonotus cucullatus ]) with much higher resistance to toad toxins (up to 85-fold) and one elapid (swamp snakes [  Hemiaspis signata ]) with low resistance but a small relative head size and thus low maximum prey size. Overall, our analysis suggests that cane toads threaten populations of approximately 30% of terrestrial Australian snake species.  相似文献   
52.
53.
    
Every year, millions of migratory shorebirds fly through the East Asian–Australasian Flyway between their arctic breeding grounds and Australasia. This flyway includes numerous coastal wetlands in Asia and the Pacific that are used as stopover sites where birds rest and feed. Loss of a few important stopover sites through sea‐level rise (SLR) could cause sudden population declines. We formulated and solved mathematically the problem of how to identify the most important stopover sites to minimize losses of bird populations across flyways by conserving land that facilitates upshore shifts of tidal flats in response to SLR. To guide conservation investment that minimizes losses of migratory bird populations during migration, we developed a spatially explicit flyway model coupled with a maximum flow algorithm. Migratory routes of 10 shorebird taxa were modeled in a graph theoretic framework by representing clusters of important wetlands as nodes and the number of birds flying between 2 nodes as edges. We also evaluated several resource allocation algorithms that required only partial information on flyway connectivity (node strategy, based on the impacts of SLR at nodes; habitat strategy, based on habitat change at sites; population strategy, based on population change at sites; and random investment). The resource allocation algorithms based on flyway information performed on average 15% better than simpler allocations based on patterns of habitat loss or local bird counts. The Yellow Sea region stood out as the most important priority for effective conservation of migratory shorebirds, but investment in this area alone will not ensure the persistence of species across the flyway. The spatial distribution of conservation investments differed enormously according to the severity of SLR and whether information about flyway connectivity was used to guide the prioritizations. With the rapid ongoing loss of coastal wetlands globally, our method provides insight into efficient conservation planning for migratory species. Gestión Óptima de una Ruta Migratoria de Múltiples Especies de Aves Costeras Sometida a Incremento del Nivel del Mar  相似文献   
54.
Predation on native fauna by non‐native invasive mammals is widely documented, but effects of predation at the population level are rarely measured. Eradication of invasive mammals from islands has led to recovery of native biota, but the benefits of controlling invasive mammal populations in settings where eradication is not feasible are less understood. We used various combinations of aerially delivered toxic bait and control measures on the ground to reduce abundances of invasive rats (Rattus rattus) to low levels over large areas on mainland New Zealand and then monitored the abundance of invertebrates on replicated treatment sites to compare with abundances on similar nontreatment sites. We also assessed rat diet by examining stomach contents. Abundance of the rats’ most‐consumed invertebrate prey item, the large‐bodied Auckland tree weta (Hemideina thoracica), increased 3‐fold on treatment sites where we maintained rats at <4/ha for approximately 3 years, compared with the nontreatment sites. Auckland tree weta also increased in abundance on sites where rats were controlled with a single aerial‐poisoning operation, but rat abundance subsequently increased on these sites and tree weta abundance then declined. Nevertheless, our data suggest that biennial reduction of rat abundances may be sufficient to allow increases in tree weta populations. Other invertebrates that were consumed less often (cave weta [Rhaphidophoridae], spiders [Araneae], and cockroaches [Blattodea]) showed no systematic changes in abundance following rat control. Our results suggest that the significant threat to recruitment and individual survival that predation by rats poses for tree weta can be mitigated by wide‐scale aerial pest control. Efectos del Control Extensivo Espacial de Ratas Invasoras sobre la Abundancia de Invertebrados Nativos en Bosques de Nueva Zelanda  相似文献   
55.
56.
57.
    
Forest fragments have biodiversity value that may be enhanced through management such as control of non‐native predators. However, such efforts may be ineffective, and research is needed to ensure that predator control is done strategically. We used Bayesian hierarchical modeling to estimate fragment‐specific effects of experimental rat control on a native species targeted for recovery in a New Zealand pastoral landscape. The experiment was a modified BACI (before‐after‐control‐impact) design conducted over 6 years in 19 forest fragments with low‐density subpopulations of North Island Robins (Petroica longipes). The aim was to identify individual fragments that not only showed clear benefits of rat control, but also would have a high probability of subpopulation growth even if they were the only fragment managed. We collected data on fecundity, adult and juvenile survival, and juvenile emigration, and modeled the data in an integrated framework to estimate the expected annual growth rate (λ) of each subpopulation with and without rat control. Without emigration, subpopulation growth was estimated as marginal (λ = 0.95–1.05) or negative (λ = 0.74–0.90) without rat control, but it was estimated as positive in all fragments (λ = 1.4–2.1) if rats were controlled. This reflected a 150% average increase in fecundity and 45% average increase in adult female survival. The probability of a juvenile remaining in its natal fragment was 0.37 on average, but varied with fragment connectivity. With juvenile emigration added, 6 fragments were estimated to have a high (>0.8) probability of being self‐sustaining (λ > 1) with rat control. The key factors affecting subpopulation growth rates under rat control were low connectivity and stock fencing because these factors were associated with lower juvenile emigration and higher fecundity, respectively. However, there was also substantial random variation in adult survival among fragments, illustrating the importance of hierarchical modeling for fragmentation studies. Control Estratégico de Ratas para Restaurar Poblaciones de Especies Nativas en Fragmentos de Bosque  相似文献   
58.
Two population-based surveys of South Dade County, Florida, were conducted after Hurricane Andrew to compare hurricane-related symptoms of mental distress and describe the impact of mental health outreach teams. Households were selected by three-stage cluster sampling and findings from the two surveys, 13 months apart, were compared. Response rates were 75 per cent and 84 per cent. The prevalence of symptoms of mental distress decreased over time. However, in the households contacted by the teams (25 per cent of sample), the prevalence of symptoms (50 per cent) did not differ from households not contacted (43 per cent). Households contacted by teams that reported symptoms were just as likely to have been referred for help by the teams (72 per cent) as those without symptoms (68 per cent). Households reporting symptoms were equally likely to get counselling regardless of whether the teams visited. Mental health teams had no significant impact on mental health symptoms or the use of mental health services. Alternative approaches to mental health outreach teams need to be explored.  相似文献   
59.
/ An exhaustive search of the literature for foot and vehicle traffic impacts on vegetation has yielded more than 400 citations, two thirds of which held sufficient detail to be usefully distilled into a personal-computer data base. A total of 1444 individual observations involving 737 species that were trampled are included. Compromises were made in the depth of entry detail and to allow comparability among data. Inconsistent, generally short-term, experimental practices disallowed formal statistical analyses. Within those constraints, graminoids emerged with the highest mean resistance and resilience among life-forms. Climbers and cactoids ranked lowest in these categories. The herbaceous, typically broader-leaved (forb) life-form appeared most likely to suffer immediate losses. Shrubs and trees had the longest-lasting decreases in diversity following traffic impact. All life-forms had sensitive species. The greatest general species and individual plant losses take place in the first few passes by feet, wheels, or tracks. Plant and soil damage increases with the amount of weight and power applied. Greater soil moisture and/or deeper overstory shading magnify those impacts. Additional precepts may become apparent to data-base users through increased ease in making comparisons.KEY WORDS: Vegetation; Trampling; Vehicles; Traffic; Resistance; Resilience; Data base  相似文献   
60.
/ Air quality in most Asian cities is poor and getting worse. It will soon become impossible to sustain population, economic, and industrial growth without severe deterioration of the atmospheric environment. This paper addresses the city of Shanghai, the air-quality problems it faces over the next 30 years, and the potential of advanced technology to alleviate these problems. Population, energy consumption, and emission profiles are developed for the city at 0.1 degrees x 0.1 degrees resolution and extrapolated from 1990 to 2020 using sector-specific economic growth factors. Within the context of the RAINS-Asia model, eight technology scenarios are examined for their effects on ambient concentrations of sulfur dioxide and sulfate and their emission control costs. Without new control measures, it is projected that the number of people exposed to sulfur dioxide concentrations in excess of guidelines established by the World Health Organization will rise from 650,000 in 1990 to more than 14 million in 2020. It is apparent that efforts to reduce emissions are likely to have significant health benefits, measured in terms of the cost of reducing the number of people exposed to concentrations in excess of the guidelines ($10-50 annually per person protected). Focusing efforts on the control of new coal-fired power plants and industrial facilities has the greatest benefit. However, none of the scenarios examined is alone capable of arresting the increases in emissions, concentrations, and population exposure. It is concluded that combinations of stringent scenarios in several sectors will be necessary to stabilize the situation, at a potential cost of $500 million annually by the year 2020. KEY WORDS: Coal; China; Shanghai; Sulfur dioxide; Air quality; Health effects  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号