首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   2篇
  国内免费   9篇
安全科学   10篇
废物处理   30篇
环保管理   27篇
综合类   25篇
基础理论   48篇
环境理论   1篇
污染及防治   128篇
评价与监测   33篇
社会与环境   18篇
灾害及防治   2篇
  2023年   8篇
  2022年   56篇
  2021年   28篇
  2020年   12篇
  2019年   7篇
  2018年   11篇
  2017年   17篇
  2016年   17篇
  2015年   12篇
  2014年   12篇
  2013年   35篇
  2012年   8篇
  2011年   8篇
  2010年   8篇
  2009年   7篇
  2008年   10篇
  2007年   5篇
  2006年   8篇
  2005年   10篇
  2004年   3篇
  2003年   7篇
  2002年   8篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1990年   2篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1939年   1篇
排序方式: 共有322条查询结果,搜索用时 15 毫秒
271.
Laser induced breakdown spectroscopy (LIBS) was applied for the detection of carcinogenic elements like bromine in four representative brands of loaf bread samples and the measured bromine concentrations were 352, 157, 451, and 311 ppm, using Br I (827.2 nm) atomic transition line as the finger print atomic transition. Our LIBS system is equipped with a pulsed laser of wavelength 266 nm with energy 25 mJ pulse?1, 8 ns pulse duration, 20 Hz repetition rate, and a gated ICCD camera. The LIBS system was calibrated with the standards of known concentrations in the sample (bread) matrix and such plot is linear in 20–500 ppm range. The capability of our system in terms of limit of detection and relative accuracy with respect to the standard inductively coupled plasma mass spectrometry (ICPMS) technique was evaluated and these values were 5.09 ppm and 0.01–0.05, respectively, which ensures the applicability of our system for Br trace level detection, and LIBS results are in excellent agreement with that of ICPMS results.  相似文献   
272.
Knowing the fraction of methane (CH4) oxidized in landfill cover soils is an important step in estimating the total CH4 emissions from any landfill. Predicting CH4 oxidation in landfill cover soils is a difficult task because it is controlled by a number of biological and environmental factors. This study proposes an artificial neural network (ANN) approach using feedforward backpropagation to predict CH4 oxidation in landfill cover soil in relation to air temperature, soil moisture content, oxygen (O2) concentration at a depth of 10 cm in cover soil, and CH4 concentration at the bottom of cover soil. The optimum ANN model giving the lowest mean square error (MSE) was configured from three layers, with 12 and 9 neurons at the first and the second hidden layers, respectively, log-sigmoid (logsig) transfer function at the hidden and output layers, and the Levenberg-Marquardt training algorithm. This study revealed that the ANN oxidation model can predict CH4 oxidation with a MSE of 0.0082, a coefficient of determination (R 2) between the measured and predicted outputs of up to 0.937, and a model efficiency (E) of 0.8978. To conclude, further developments of the proposed ANN model are required to generalize and apply the model to other landfills with different cover soil properties.

Implications:

To date, no attempts have been made to predict the percent of CH4 oxidation within landfill cover soils using an ANN. This paper presents modeling of CH4 oxidation in landfill cover soil using ANN based on field measurements data under tropical climate conditions in Malaysia. The proposed ANN oxidation model can be used to predict the percentage of CH4 oxidation from other landfills with similar climate conditions, cover soil texture, and other properties. The predicted value of CH4 oxidation can be used in conjunction with the Intergovernmental Panel on Climate Change (IPCC) First Order Decay (FOD) model by landfill operators to accurately estimate total CH4 emission and how much it contributes to global warming.  相似文献   

273.
Abstract

Water samples taken from selected industrial drainages and receiving streams in and around Islamabad, Pakistan, during the summers of 1987 to 1990 showed disturbances in pH and low oxygen levels. Selected metals (Fe, Pb, Zn, Cd, Cu, Ni, Hg) were higher in all effluents than in receiving waters. Static bioassays of the undiluted industrial effluents from three sites caused 100% mortality in carp during the first 24 hrs. Fishes also suffered 30 to 60% mortality when exposed to other undiluted industrial effluents and some mortality when industrial effluents were diluted by 50%.  相似文献   
274.
Agricultural wastes such as rice straw, sugar beet, and sugarcane bagasse have become a critical environmental issue due to growing agriculture demand. This study aimed to investigate the valorization possibility of sugarcane bagasse waste for activated carbon preparation. It also aimed to fully characterize the prepared activated carbon (BET surface area) via scanning electron microscope (SEM) and in terms of surface functional groups to give a basic understanding of its structure and to study the adsorption capacity of the sugarcane bagasse-based activated carbon using aqueous methylene blue (MB). The second main objective was to evaluate the performance of sugarcane bagasse-based activated carbon for indoor volatile organic compounds removal using the formaldehyde gas (HCHO) as reference model in two potted plants chambers. The first chamber was labeled the polluted chamber (containing formaldehyde gas without activated carbon) and the second was taken as the treated chamber (containing formaldehyde gas with activated carbon). The results indicated that the sugarcane bagasse-based activated carbon has a moderate BET surface area (557 m2/g) with total mesoporous volume and microporous volume of 0.310 and 0.273 cm3/g, respectively. The prepared activated carbon had remarkable adsorption capacity for MB. Formaldehyde removal rate was then found to be more than 67% in the treated chamber with the sugarcane bagasse-based activated carbon. The plants’ responses for this application as dry weight, chlorophyll contents, and protein concentration were also investigated.

Implications: Preparation of activated carbon from sugarcane bagasse (SCBAC) is a promising approach to produce cheap and efficient adsorbent for gas pollutants removal. It may be also a solution for the agricultural wastes problems in big cities, particularly in Egypt. MB adsorption tests suggest that the SCBAC have high adsorption capacity. Formaldehyde gas removal in the plant chambers indicates that the SCBAC have potential to recover volatile gases. The results confirmed that the activated carbon produced from sugarcane bagasse waste raw materials can be used as an applicable adsorbent for treating a variety of gas pollutants from the indoor environment.  相似文献   
275.

Acknowledgment

Reviewer Acknowledgments  相似文献   
276.
Despite the demonstrated importance of time perspective on key outcomes, its growing popularity, and its wide reach in terms of samples and disciplines, the construct has been plagued with definitional and measurement problems since its inception. Given the historical and current confusion regarding both conceptualization and operationalization, the purpose of this article is to provide an overview of methodological and measurement issues related to time perspective. Clearly, definitional and measurement clarity are critical for the success of future research. Through integrating the fragmented and eclectic time perspective literature fraught with ambiguity, we help to clarify measurement options and their psychometric evidence for future researchers. Specifically, we provide an in-depth comparison of four (and their offshoots) commonly used, scale-based measures of time perspective with respect to their dimensional content, psychometric properties, and validation evidence. We end with recommendations for time perspective research.  相似文献   
277.
Heavy metal contamination is of particular concern for human health and the environment. Phytoremediation is an emerging cost‐effective strategy to remediate heavy metal contaminated soil. However, this technique is limited by the small number of plants that are tolerant to heavy metals and are also accumulators. This study assayed zinc, lead, and cadmium tolerance and accumulation in Cistus libanotis, Cistus albidus, and Cistus salviifolius. The plants were cultivated in hydroponic conditions and exposed to different concentrations of Pb(NO3)2 (100 and 200 µM), ZnSO4 (100 and 200 µM), or CdCl2 (10 and 20 µM) for 3 weeks. Plant biomass and metal accumulation in roots and aboveground parts varied greatly among the species. All three species appeared to be sensitive to Zn. However, C. albidus displayed strong tolerance to Pb and accumulated large quantities of Pb and Cd in its roots. C. libanotis accumulated large quantities of Pb and Cd in its aboveground parts. C. libanotis can thus be classified as a Pb and Cd accumulator species. The study results show that C. albidus is suitable for phytostabilization of Pb‐contaminated soils, while C. libanotis can be used for phytoextraction of both Pb and Cd.  相似文献   
278.
279.
Recently, the Rhizobium-legume symbiotic interaction has been proposed as an interesting tool in bioremediation. However, little is known about the effect of most common contaminants on this process. The phytotoxic effects of arsenic on nodulation of Medicago sativa have been examined in vitro using the highly arsenic resistant and symbiotically effective Sinorhizobium sp. strain MA11. The bacteria were able to grow on plates containing As concentrations as high as 10 mM. Nevertheless, as little as 25-35 microM arsenite produced a 75% decrease in the total number of nodules, due to a 90% reduction in the number of rhizobial infections, as could be determined using the strain MA11 carrying a lacZ reporter gene. This effect was associated to root hair damage and a shorter infective root zone. However, once nodulation was established nodule development seemed to continue normally, although earlier senescence could be observed in nodules of arsenic-grown plants.  相似文献   
280.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号