首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   0篇
  国内免费   4篇
安全科学   1篇
废物处理   31篇
环保管理   40篇
综合类   26篇
基础理论   52篇
污染及防治   63篇
评价与监测   45篇
社会与环境   8篇
  2023年   4篇
  2022年   6篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   5篇
  2016年   8篇
  2015年   12篇
  2014年   10篇
  2013年   38篇
  2012年   16篇
  2011年   16篇
  2010年   15篇
  2009年   8篇
  2008年   17篇
  2007年   8篇
  2006年   10篇
  2005年   9篇
  2004年   10篇
  2003年   8篇
  2002年   7篇
  2001年   8篇
  2000年   5篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1977年   1篇
  1972年   1篇
排序方式: 共有266条查询结果,搜索用时 15 毫秒
171.
In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV-Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24- 38 nm for gold and 30-45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functionalmetabolites were identified by the Fourier TransformInfrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens. © 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.  相似文献   
172.
The use of first trimester screening to detect aneuploidy has become an integral part of prenatal care. The application of similar screening algorithms to identify women at the highest risk for other adverse pregnancy outcomes in the first trimester could potentially have a major clinical impact. There has been much investigation into the ability to identify patients early in pregnancy at high risk for adverse pregnancy outcomes who may benefit from further surveillance and/or intervention. For this to be the case, however, as is true of any useful screening test, effective interventions need to be available. Unfortunately, for fetal growth restriction and stillbirth, no such interventions exist short of delivery. For preeclampsia, low dose aspirin has been demonstrated to be of benefit in specific subgroups. For preterm birth, although there are efficacious treatments, first trimester serum markers or cervical length measurements do not add significantly beyond historical or demographic factors, in prediction of preterm birth. Given the current evidence, first trimester screening, via serum or ultrasound markers, does not have sufficiently high enough positive predictive values for the development of preeclampsia, fetal growth restriction, preterm birth or stillbirth. In order to develop effective screening algorithms for adverse pregnancy outcomes in the first trimester, understanding the heterogeneous phenotype of these complications and the underlying pathophysiology is needed. © 2014 John Wiley & Sons, Ltd.  相似文献   
173.
This article presents a bench‐scale study performed to investigate the removal of heavy metals when they exist individually and in combination in soils. Electrokinetic experiments were conducted using two types of clayey soils, kaolin and glacial till. These soils were contaminated with Cr(VI) only, with Ni(II) only, and with Cr(VI), Ni(II), and Cd(II) combined. It was found that in kaolin, a significant pH variation occurred due to electric potential application, affecting the adsorption‐desorption and dissolution‐precipitation, as well as the extent of migration of the contaminants. In glacial till, however, pH changes were not affected significantly. In both kaolin and glacial till, the migration of Cr(VI) and Ni(II) was higher when they were present individually compared to when they existed together with Cd(II). Cr(VI) migration as single or combined contaminant was lower in kaolin as compared to that in glacial till. This result was due to the low pH conditions created near the anode region in kaolin that led to high Cr(VI) adsorption to the clay surfaces. In glacial till, however, nickel precipitated with or without the presence of co‐contaminants due to high pH conditions in the soil. Overall, this study demonstrates that adsorption, precipitation, and reduction are the significant hindering mechanisms for the removal of heavy metals using electrokinetic remediation. The direction of the contaminant migration and overall removal efficiency depend on the polarity of the contaminant, the presence of co‐contaminants, and the type of soil. © 2001 John Wiley & Sons.  相似文献   
174.
175.
In their natural environment, plants are often attacked simultaneously by many insect species. The specificity of induced plant responses that is reported after single herbivore attacks may be compromised under double herbivory and this may influence later arriving herbivores. The present study focuses on the dynamics of induced plant responses induced by single and double herbivory, and their effects on successive herbivores. Morphological (leaf length, area and trichome density) and chemical changes (leaf alkenyl and indole glucosinolates) in Brassica juncea were evaluated 4, 10, 14 and 20 days after damage by the specialist Plutella xylostella alone, or together with the generalist Spodoptera litura. To assess the biological effect of the plant’s responses, the preference and performance of both herbivores on previously induced plants were measured. We found that alkenyl glucosinolates were induced 20 days after damage by P. xylostella alone, whereas their levels were elevated as early as 4 days after double herbivory. Trichome density was increased in both treatments, but was higher after double herbivory. Interestingly, there was an overall decrease in indole glucosinolates and an increase in leaf size due to damage by P. xylostella, which was not observed during double damage. S. litura preferred and performed better on undamaged plants, whereas P. xylostella preferred damaged plants and performed better on plants damaged 14 and 10 days after single and double herbivory, respectively. Our results suggest that temporal studies involving single versus multiple attacker situations are necessary to comprehend the role of induced plant responses in plant–herbivore interactions.  相似文献   
176.
177.
Urbanization is known to spur land modification in the form of conversion of common land to human settlements. This factor, combined with climate variability, can alter the duration, frequency and intensity of storm drain overflows in urban areas and lead to public health risks. In peri-urban regions where these risks are especially high it has been argued that, when domestic wastewater is managed, better prospects for freshwater water savings through swaps between urban water supply and irrigated agriculture may be possible. As a consequence of re-use of domestic wastewater, expenditure on inorganic inputs by farmers may decline and source sustainability of water supply could be enhanced. Given the fact that, at present, approximately 20 million ha of land worldwide is being cultivated by re-using domestic wastewater, this paper draws on evidence from India to explore: (1) the economic costs–benefits of wastewater reuse in the context of hypothesized links to climate variability; (2) the role of local farming practices, market conditions and crop variety in influencing wastewater reuse in agriculture; and (3) the role of inter-governmental financing in influencing the selection of technical adaptation options for collection, treatment and disposal of wastewater.  相似文献   
178.
Tailoring nitrogen (N) fertilizer applications to cotton (Gossypium hirsutum L.) in response to leaf N status may optimize N use efficiency and reduce off-site effects of excessive fertilizer use. This study compared leaf and canopy reflectance within the 350 to 950 nm range in order to identify reflectance ratios sensitive to leaf chlorophyll (Chl), and hence N status, in cotton. Plants were grown outdoors in large pots using half-strength Hoagland's (control) solution until some three-row plots received a restricted supply of N. Treatments comprised control, 20% of control N at first flower bud (square) onward; 0 and 20% of control N at first flower onward; and 0% of control N at fruit-filling onward. Despite leaf N values ranging from 51 to 19 g kg-1 across treatments and sampling dates, a weak correlation was obtained between Chl and N (r2 = 0.32, df = 70). In general, N stress led to increased reflectance at 695 +/- 2.5 nm (R695) and decreased reflectance at R410, and changes in leaf N were best correlated with either R695 or R755 in leaves and either R410 or R700 in canopies. The strongest associations between leaf constituent and canopy reflectance ratio were Chl vs. R415/R695 (r2 = 0.72), carotenoids vs. R415/R685 (r2 = 0.79), and N vs. R415/R710 (r2 = 0.70). The R415 measure appears to be a more stable spectral feature under N stress, as compared with more pronounced changes along the reflectance red edge (690-730 nm). Multiple regression identified a three-waveband canopy reflectance model that explained 80% of the variability in leaf N. Results indicate that remote sensing of N status in cotton is feasible using narrow-waveband reflectance ratios that involve the violet or blue region of the spectrum (400 to 450 nm) and the more commonly featured red-edge region.  相似文献   
179.
ABSTRACT: A closed form solution is presented for determining the shape and location of the interface between two dissimilar fluids (having different densities) when steady flow takes place through a homogeneous and isotropic porous medium, into a sheetpile cofferdam; the interface is assumed to be sharp and the lower fluid stationary. The solution is obtained using the inverse hodograph. Numerical results are presented in nondimensional form for various parametric conditions in the physical plane; the interface pattern, as also the seepage discharge and exit gradient distribution are shown. The critical conditions of the interface are studied.  相似文献   
180.
Removal of copper from aqueous solutions containing 100–1000 ppm, using different Indian bark species, was performed on laboratory scale. The percentage removal of metal ions depends on the solution pH, bark species and time. The efficiency of copper removal by the used raw barks increases with a rise of solution pH and reaches a maximum of about 65–78% around pH 4–5. However, the decontaminated aqueous solutions were colored due to the dissolution of soluble organic compounds contained in the raw bark. This increases the biological and chemical oxygen demand (BOD and COD) of the solutions as well as the total organic carbon content (TOC). For this reason, raw bark should be treated either by chemical or biological means. Such treatment will allow the extraction of the soluble organic compounds and increase the chelating capacity and efficiency of the treated bark. Depending on the pH value, the chelating efficiency of treated barks is about 1.2–2.2 times that of the raw ones. Moreover, the retention capacity of the Indian treated bark varies from about 42–51 mg/g of dry bark. It is equal to or higher than that of common European species. About 1.8 mols of H3O+ are released, by the treated barks, for every mol of chelated copper ions. Moreover, scanning electron microscopy (SEM) observations show uniform distribution of metal ions throughout the copper saturated bark. Infra red (IR) spectra suggest that the copper ions are chelated to hydroxyl and/or carboxyl functional groups of organic compounds contained in the treated bark. It seems that the interaction of the copper ions with the bark follows a cation exchange mechanism. This hypothesis is supported by elution experiments that allow recovery of about 99% of the contained copper. The retention capacity of the treated bark is almost constant after five cycles of chelation–elution, suggesting that the ‘life time cycle' is sufficiently long for continuous industrial application. The spent copper loaded barks can either be incinerated or pyrolysed. It generates solids containing either ≈80% of CuO or ≈14% of Cu°, respectively. Such materials can be used either in the secondary or primary copper production, thus offering a friendly environmental solution of effluents' treatment. The suggested process can be used as an alternative to the classical technologies for effluent decontamination. It is also efficient for polishing effluents treated by other methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号