首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   0篇
  国内免费   4篇
安全科学   1篇
废物处理   31篇
环保管理   40篇
综合类   26篇
基础理论   52篇
污染及防治   63篇
评价与监测   45篇
社会与环境   8篇
  2023年   4篇
  2022年   6篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   5篇
  2016年   8篇
  2015年   12篇
  2014年   10篇
  2013年   38篇
  2012年   16篇
  2011年   16篇
  2010年   15篇
  2009年   8篇
  2008年   17篇
  2007年   8篇
  2006年   10篇
  2005年   9篇
  2004年   10篇
  2003年   8篇
  2002年   7篇
  2001年   8篇
  2000年   5篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1977年   1篇
  1972年   1篇
排序方式: 共有266条查询结果,搜索用时 375 毫秒
101.
102.
The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha?1 h?1 year?1. Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3 % of the cluster has soil loss below 20 t ha?1 year?1. The soil loss from crop land varied from 2.9 to 3.6 t ha?1 year?1 in low rainfall years to 31.8 to 34.7 t ha?1 year?1 in high rainfall years with a mean annual soil loss of 12.2 t ha?1 year?1. The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha?1 year?1 in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3 % of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water using farm ponds and percolation tanks. This methodology can be adopted for estimating the soil loss from similar ungauged watersheds with deficient data and for planning suitable soil and water conservation interventions for the sustainable management of the watersheds.  相似文献   
103.
The present study investigated the impacts of treated effluent discharge on physicochemical and biological properties of coastal waters from three pharmaceuticals situated along the coast of Visakhapatnam (SW Bay of Bengal). Seawater samples were collected (during the months of December 2013, March 2014 and April 2014) from different sampling locations (Chippada (CHP), Tikkavanipalem (TKP) and Nakkapalli (NKP)) at 0- and 30-m depths within 2-km radius (0.5 km = inner, 1 km = middle and 2 km?=?outer sampling circles) from the marine outfall points. Physicochemical and biological parameters, which differed significantly within the stations, were likely to be influenced by strong seasonality rather than local discharge. Dissolved oxygen variability was tightly coupled with both physical and biological processes. Phytoplankton cell density and total chlorophyll (TChla) concentrations were significantly correlated with dissolved inorganic nutrient concentrations. CHP (December) represented a diatom bloom condition where the highest concentrations of diatom cells, total chlorophyll (TChla), dissolved oxygen coupled with lower zooplankton abundance and low nutrient levels were noticed. The centric diatom, Chaetoceros sp. (>?50%) dominated the phytoplankton community. TKP (March) represented a post-diatom bloom phase with the dominance of Pseudo-nitzschia seriata; zooplankton abundance and nutrient concentrations were minimum. Conversely, NKP (April) represented a warm well-stratified heterotrophic period with maximum zooplankton and minimum phytoplankton density. Dinoflagellate abundance increased at this station. Relatively higher water temperature, salinity, inorganic nutrients coupled with very low concentrations of dissolved oxygen, TChla and pH were observed at this station. Copepods dominated the zooplankton communities in all stations and showed their highest abundance in the innermost sampling circles. Treated effluent discharge did not seem to have any significant impact at these discharge points.  相似文献   
104.
Variability in horizontal zooplankton biomass distribution was investigated over 13 months in the Godavari estuary, along with physical (river discharge, temperature, salinity), chemical (nutrients, particulate organic matter), biological (phytoplankton biomass), and geological (suspended matter) properties to examine the influencing factors on their spatial and temporal variabilities. The entire estuary was filled with freshwater during peak discharge period and salinity near zero, increased to ~ 34 psu during dry period with relatively high nutrient levels during former than the latter period. Due to low flushing time (< 1 day) and high suspended load (> 500 mg L?1) during peak discharge period, picoplankton (cyanophyceae) contributed significantly to the phytoplankton biomass (Chl-a) whereas microplankton and nanoplankton (bacillariophyceae, and chlorophyceae) during moderate and mostly microplankton during dry period. Zooplankton biomass was the lowest during peak discharge period and increased during moderate followed by dry period. The zooplankton abundance was controlled by dead organic matter during peak discharge period, while both phytoplankton biomass and dead organic matter during moderate discharge and mostly phytoplankton biomass during dry period. This study suggests that significant modification of physico-chemical properties by river discharge led to changes in phytoplankton composition and dead organic matter concentrations that alters biomass, abundance, and composition of zooplankton in the Godavari estuary.  相似文献   
105.
Anthropogenic activities associated with industrialization, agriculture and urbanization have led to the deterioration in water quality due to various contaminants. To assess the status of urban drinking water quality, samples were collected from the piped supplies as well as groundwater sources from different localities of residential, commercial and industrial areas of Lucknow City in a tropical zone of India during pre-monsoon for estimation of coliform and faecal coliform bacteria, organochlorine pesticides (OCPs) and heavy metals. Bacterial contamination was found to be more in the samples from commercial areas than residential and industrial areas. OCPs like α,γ-hexachlorocyclohexane and 1,1 p,p-DDE {dichloro-2, 2-bis(p-chlorophenyl) ethene)} were found to be present in most of the samples from study area. The total organochlorine pesticide levels were found to be within the European Union limit (0.5 μg/L) in most of the samples. Most of the heavy metals estimated in the samples were also found to be within the permissible limits as prescribed by World Health Organization for drinking water. Thus, these observations show that contamination of drinking water in urban areas may be mainly due to municipal, industrial and agricultural activities along with improper disposal of solid waste. This is an alarm to safety of public health and aquatic environment in tropics.  相似文献   
106.
The concentrations of toxic heavy metals—Cd and Pb and micronutrients—Cu, Mn, and Zn were assessed in the surface soil and water of three different stages of paddy (Oryza sativa L.) fields, the stage I—the first stage in the field soon after transplantation of the paddy seedlings, holding adequate amount of water on soil surface, stage II—the middle stage with paddy plants of stem of about 40 cm length, with sufficient amount of water on the soil surface, and stage III—the final stage with fully grown rice plants and very little amount of water in the field at Bahour, a predominantly paddy cultivating area in Puducherry located on the southeast Coast of India. Comparison of the heavy metal and micronutrient concentrations of the soil and water across the three stages of paddy field showed their concentrations were significantly higher in soil compared with that of water (p?<?0.05) of the fields probably because of accumulation and adsorption in soil. The elemental concentrations in paddy soil as well as water was in the ranking order of Cd?>?Mn?>?Zn?>?Cu?>?Pb indicating concentration of Cd was maximum and Pb was minimum. The elemental concentrations in both soil and water across the three stages showed a ranking order of stage II?>?stage III?>?stage I. The runoff from the paddy fields has affected the elemental concentrations of the water and sediment of an adjacent receiving rivulet.  相似文献   
107.
Constructed treatment wetlands are a relatively low-cost alternative used for tertiary treatment of wastewater. Phosphorus (P) removal capacity of these wetlands may decline, however, as P is released from the accrued organic soils. Little research has been done on methods to restore the treatment capacity of aging constructed wetlands. One possibility is the seasonal addition of alum during periods of low productivity and nutrient removal. Our 3-mo mesocosm study investigated the effectiveness of alum in immobilizing P during periods of reduced treatment efficiency, as well as the effects on soil biogeochemistry. Eighteen mesocosms were established, triplicate experimental and control units for Typha sp., Schoenoplectus californicus, and submerged aquatic vegetation (SAV) (Najas guadalupensis dominated). Alum was slowly dripped to the water column of the experimental units at a rate of 0.91 g Al m(-2) d(-1) and water quality parameters were monitored. Soil cores were collected at experiment initiation and completion and sectioned into 0- to 5- and 5- to 10-cm intervals for characterization. The alum floc remained in the 0- to 5-cm surface soil, however, soil pH and microbial parameters were impacted throughout the upper 10 cm with the lowest pH found in the Typha treatment. Plant type did not impact most biogeochemical parameters; however, data were more variable in the SAV mesocosms. Amorphous Al was greater in the surface soil of alum-treated mesocosms, inversely correlated with soil pH and microbial biomass P in both soil layers. Microbial activity was also suppressed in the surface soil of alum-treated mesocosms. This research suggests alum may significantly affect the biogeochemistry of treatment wetlands and needs further investigation.  相似文献   
108.
In this present study, we reported broccoli(Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles(NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV–Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV–Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24–38 nm for gold and 30–45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally,the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes(sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/m L respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.  相似文献   
109.
Removal of p-chlorophenol (pCP) from synthetic aqueous solutions was studied through adsorption on a biosorbent developed from chitosan (CS) and sodium alginate (SA), the natural cationic and anionic polysaccharides, respectively. Chitosan-coated sodium alginate beads were prepared and treated with calcium chloride solution in order to improve the stability as well as hydrophobic character. The resulting beads (CS/CA) were characterized using FTIR spectra, scanning electron microscopy (SEM), and BET surface analysis. The efficiency of this biosorbent in removing pCP from aqueous medium was studied under batch equilibrium and dynamic column flow experimental conditions. The binding capacity of the biosorbent was studied as a function of initial pH, contact time, initial concentration of adsorbate and amount of biomass. The data were fitted to pseudo-first-order, pseudo-second-order, and Weber–Morris models and found that the adsorption process followed pseudo-first-order kinetics. Further, the equilibrium data were fitted to Freundlich, Langmiur, and Dubinin–Radushkevich (D–R) adsorption isotherms and the isotherm constants were evaluated for adsorption of pCP. The maximum monolayer adsorption capacity of CS/CA beads was found to be 127 mg g?1. Column flow results were used to generate breakthrough curves. The experimental results suggested that the chitosan–calcium alginate blended biosorbent was effective for the removal of pCP from aqueous medium.  相似文献   
110.
This paper presents the results of a laboratory investigation to determine the geotechnical properties of fresh municipal solid waste (MSW) collected from the working phase of Orchard Hills Landfill located in Davis Junction (Illinois, USA). Laboratory testing was conducted on shredded MSW to determine the compaction, hydraulic conductivity, compressibility, and shear strength properties at in-situ gravimetric moisture content of 44%. In addition, the effect of increased moisture content during leachate recirculation on compressibility and shear strength of MSW was also investigated by testing samples with variable gravimetric moisture contents ranging from 44% to 100%. Based on Standard Proctor tests, a maximum dry density of 420 kg/m(3) was observed at 70% optimum moisture content. The hydraulic conductivity varied in a wide range of 10(-8)-10(-4)m/s and decreased with increase in dry density. Compression ratio values varied in a close range of 0.24-0.33 with no specific trend with the increase in moisture content. Based on direct shear tests, drained cohesion varied from 31 to 64 kPa and the drained friction angle ranged from 26 to 30 degrees. Neither cohesion nor friction angle demonstrated any correlation with the moisture content, within the range of moisture contents tested. The consolidated undrained triaxial shear tests on saturated MSW showed the total strength parameters (c and phi) to be 32 kPa and 12 degrees, and the effective strength parameters (c' and phi') to be 38 kPa and 16 degrees. The angle of friction (phi) decreased and cohesion (c) value increased with the increase in strain. The effective cohesion (c') increased with increase in strain; however, the effective angle of friction (phi') decreased first and then increased with the increase in strain. Such strain-dependent shear strength properties should be properly accounted in the stability analysis of bioreactor landfills.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号