首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14348篇
  免费   177篇
  国内免费   108篇
安全科学   452篇
废物处理   545篇
环保管理   2394篇
综合类   2352篇
基础理论   3697篇
环境理论   9篇
污染及防治   3488篇
评价与监测   878篇
社会与环境   700篇
灾害及防治   118篇
  2023年   74篇
  2022年   122篇
  2021年   123篇
  2020年   95篇
  2019年   125篇
  2018年   209篇
  2017年   184篇
  2016年   277篇
  2015年   240篇
  2014年   317篇
  2013年   1156篇
  2012年   451篇
  2011年   618篇
  2010年   506篇
  2009年   591篇
  2008年   666篇
  2007年   646篇
  2006年   565篇
  2005年   507篇
  2004年   426篇
  2003年   451篇
  2002年   429篇
  2001年   524篇
  2000年   391篇
  1999年   232篇
  1998年   173篇
  1997年   182篇
  1996年   197篇
  1995年   235篇
  1994年   220篇
  1993年   200篇
  1992年   164篇
  1991年   182篇
  1990年   184篇
  1989年   172篇
  1988年   136篇
  1987年   129篇
  1986年   137篇
  1985年   118篇
  1984年   130篇
  1983年   132篇
  1982年   149篇
  1981年   140篇
  1980年   127篇
  1979年   132篇
  1978年   94篇
  1977年   86篇
  1975年   81篇
  1973年   77篇
  1972年   74篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
671.
Headquarters managers and Regional staff in the U.S. Environmental Protection Agency’s hazardous and solid waste programs were surveyed to determine priorities for technical information and guidance among EPA Regional staff, state hazardous waste management staff, EPA contractors, and the regulated community. The survey also examined delivery systems effective for EPA Regional staff. The fifteen highest ranked technical needs for RCRA, Superfund, and UST reflect a pervasive interest in hazardous waste remediation. Top priority technical needs focus on establishing cleanup levels, subsurface fate and transport, field monitoring and quality assurance, remedy selection, and most importantly, which remedies work and which do not in specific situations. Technical needs of non- EPA audiences are quite similar to those for EPA field staff. Preferences for technology transfer delivery systems are generally for conventional distribution methods (such as print materials and workshops) rather than electronic or video media. Regional staff report serious problems in utilizing technology transfer because of time constraints, insufficient knowledge of available products, insufficient travel funds, and limited access to and training on computers.  相似文献   
672.
Abstract

Neural networks have shown tremendous promise in modeling complex problems. This work describes the development and validation of a neural network for the purpose of estimating point source emission rates of hazardous gases. This neural network approach has been developed and tested using experimental data obtained for two specific air pollutants of concern in West Texas, hydrogen sulfide and ammonia. The prediction of the network is within 20% of the measured emission rates for these two gases at distances of less than 50 m. The emission rate estimations for ground level releases were derived as a function of seven variables: downwind distance, crosswind distance, wind speed, downwind concentration, atmospheric stability, ambient temperature, and relative humidity. A backpropagation algorithm was used to develop the neural network and is also discussed here. The experimental data were collected at the Wind Engineering Research Field Site located at Texas Tech University in Lubbock, Texas. Based on the results of this study, the use of neural networks provides an attractive and highly effective tool to model atmospheric dispersion, in which a large number of variables interact in a nonlinear manner.  相似文献   
673.
Abstract

This paper presents a methodological approach for assessing total exposures to volatile organic compounds (VOCs) in residences using contaminated water supplies. This approach is founded on assessment of ingestion, inhalation, and dermal exposures; both long-term (i.e., 12 to 24 hr) lowlevel exposures and short-term (i.e., =10 min) high-level exposures are considered.

The methodology is based on the collection of water samples to establish the identity of the contaminants, maximum source terms, and possible dermal and ingestion exposures; integrated whole-air samples are collected to assess long- and short-term inhalation exposures; whole-air grab samples are used to confirm peak and typical inhalation exposures; and alveolar breath samples are used to confirm exposures and to estimate contaminant concentrations in the blood of the test subjects. While we do not suggest that this methodology should supersede any current investigative approach, this material is primarily offered as a consolidated reference to the many people or organizations who might contemplate a study of this type. Application of this investigative protocol should provide detailed exposure assessment information, while it supplies critical real world data for risk assessment specialists, toxicologists, and modeling experts. Data from a recent field study assessing exposures to trichloroethylene are presented to illustrate the utility and some of the limitations of this strategy.  相似文献   
674.
Abstract

Contaminated solid wastes exist in many industrial sites, gas plants, and oil refineries. One method of decontaminating the soil is to subject it to high temperatures in a rotary calciner in an anaerobic environment. Preliminary results from a computational model are presented in this paper for the flow and heat transfer from granular solid particles under treatment in a rotary kiln calciner. A fluidization model using kinetic theory of granular flow has been employed to solve the particle flow and heat transfer problem. While a two-dimensional model is used to predict the rotation induced flow of the solid particles, a pseudo three-dimensional model for heat transfer is developed where the axial bulk temperature gradient is obtained from a one-dimensional energy balance model. The model predictions indicate interesting features of the flow and temperature fields in the bed material. Future tasks include the development of a devolatilization model to study the decontamination of waste soil in the rotary calciner.  相似文献   
675.
ABSTRACT

The capture of elemental mercury (Hg0) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sor-bents was examined in this bench-scale study under conditions prevalent in coal-fired utilities. Ca-based sorbent performances were compared with that of an activated carbon. Hg0 capture of about 40% (nearly half that of the activated carbon) was achieved by two of the Ca-based sorbents. The presence of sulfur dioxide (SO2) in the simulated coal combustion flue gas enhanced the Hg0 capture from about 10 to 40%. Increasing the temperature in the range of 65-100 °C also caused an increase in the Hg0 capture by the two Ca-based sorbents. Mercuric chloride (HgCl2) capture exhibited a totally different pattern. The presence of SO2 inhibited the HgCl2 capture by Ca-based sorbents from about 25 to less than 10%. Increasing the temperature in the studied range also caused a decrease in HgCl2 capture. Upon further pilot-scale confirmations, the results obtained in this bench-scale study can be used to design and manufacture more cost-effective mercury sorbents to replace conventional sorbents already in use in mercury control.  相似文献   
676.
ABSTRACT

In recent years, scientific discussion has included the influence of thermodynamic conditions (e.g., temperature, relative humidity, and filter face velocity) on PM retention efficiency of filter-based samplers and monitors. Method-associated thermodynamic conditions can, in some instances, dramatically influence the presence of particle-bound water and other light-molecular-weight chemical components such as particulate nitrates and certain organic compounds. The measurement of fine particle mass presents a new challenge for all PM measurement methods, since a relatively greater fraction of the mass is semi-volatile.

The tapered element oscillating microbalance (TEOM) continuous PM monitor is a U.S. Environmental Protection Agency (EPA) PM10 equivalent method (EQPM-1090-079). Several hundred of these monitors are deployed throughout the United States. The TEOM monitor has the unique characteristic of providing direct PM mass measurement without the calibration uncertainty inherent in mass surrogate methods. In addition, it provides high-precision, near-real-time continuous data automatically. Much attention has been given to semi-volatile species retention of the TEOM method.

While using this monitor, it is desirable to maintain as low an operating temperature as practical and to remove unwanted particle-bound water. A new sample equilibration system (SES) has been developed to allow conditioning of the PM sample stream to a lower humidity and temperature level. The SES incorporates a special low-particle-loss Nafion dryer. This paper discusses the configuration and theory of the SES. Performance results include high time-resolved PM2.5 data comparison between a 30 °C sample stream TEOM monitor with SES and a standard 50 °C TEOM monitor. In addition, 24-hr integrated data are compared with data collected using an EPA PM2.5 Federal Reference Method (FRM)-type sampler. The SES is a significant development because it can be applied easily to existing TEOM monitors.  相似文献   
677.
ABSTRACT

A mathematical model was used to predict the deposition fractions (DF) of PM within human lungs. Simulations using this computer model were previously validated with human subject data and were used as a control case. Human intersubject variation was accounted for by scaling the base lung morphology dimensions based on measured functional residual capacity (FRC) values. Simulations were performed for both controlled breathing (tidal volumes [VT] of 500 and 1000 mL, respiratory times [T] from 2 to 8 sec) and spontaneous breathing conditions. Particle sizes ranged from 1 to 5 um. The deposition predicted from the computer model compared favorably with the experimental data. For example, when VT = 1000 mL and T = 2 sec, the error was 1.5%. The errors were slightly higher for smaller tidal volumes. Because the computer model is deterministic (i.e., derived from first principles of physics), the model can be used to predict deposition fractions for a range of situations (i.e., for different ventilatory parameters and particle sizes) for which data are not available. Now that the model has been validated, it may be applied to risk assessment efforts to estimate the inhalation hazards of airborne pollutants.  相似文献   
678.
ABSTRACT

Two collaborative studies have been conducted by the U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory (NERL) and National Health and Environmental Effects Research Laboratory to determine personal exposures and physiological responses to par-ticulate matter (PM) of elderly persons living in a retirement facility in Fresno, CA. Measurements of PM and other criteria air pollutants were made inside selected individual residences within the retirement facility and at a central outdoor site on the premises. In addition, personal PM exposure monitoring was conducted for a subset of the participants, and ambient PM monitoring data were available for comparison from the NERL PM research monitoring platform in central Fresno. Both a winter (February 1-28, 1999) and a spring (April 19-May 16, 1999) study were completed so that seasonal effects could be  相似文献   
679.
ABSTRACT

Aerosol water content was determined from relative humidity controlled optical particle counter (ASASP-X) size distribution measurements made during the Southeastern Aerosol and Visibility Study (SEAVS) in the Great Smoky Mountains National Park during summer 1995. Since the scattering response function of the ASASP-X is sensitive to particle refractive index, a technique for calibrating the ASASP-X for any real refractive index was developed. A new iterative process was employed to calculate water mass concentration and wet refractive index as functions of relative humidity. Experimental water mass concentrations were compared to theoretically predicted values assuming only ammonium sulfate compounds were hygroscopic. These comparisons agreed within experimental uncertainty. Estimates of particle hygroscopicity using a rural aerosol model of refractive index as a function of relative humidity demonstrated no significant differences from those made with daily varying refractive index estimates. Although aerosol size parameters were affected by the assumed chemical composition, forming ratios of these parameters nearly canceled these effects.  相似文献   
680.
Abstract

In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for par-ticulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives. A simple methodology is provided here for the selection of a neighborhood-scale site for meeting either of the two objectives identified for PM monitoring. This methodology is based on analyzing middle-scale (from 100 to 500 m) data from within the area of interest. The required data can be obtained from widely available dispersion models and emissions databases.

The performance of the siting methodology was evaluated in a neighborhood-scale field study conducted in Hudson County, NJ, to characterize the area’s inhalable particulate (PM10) concentrations. Air monitors were located within a 2- by 2-km area in the vicinity of the Lincoln Tunnel entrance in Hudson County. Results indicate the siting methodology performed well, providing a positive relationship between the predicted concentration rank at each site and the actual rank experienced during the field study. Also discussed are factors that adversely affected the predictive capabilities of the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号