首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18707篇
  免费   242篇
  国内免费   158篇
安全科学   562篇
废物处理   721篇
环保管理   3024篇
综合类   2800篇
基础理论   5009篇
环境理论   5篇
污染及防治   4787篇
评价与监测   1139篇
社会与环境   923篇
灾害及防治   137篇
  2022年   130篇
  2021年   151篇
  2020年   119篇
  2019年   176篇
  2018年   271篇
  2017年   262篇
  2016年   407篇
  2015年   288篇
  2014年   402篇
  2013年   1520篇
  2012年   543篇
  2011年   744篇
  2010年   632篇
  2009年   627篇
  2008年   823篇
  2007年   821篇
  2006年   765篇
  2005年   593篇
  2004年   654篇
  2003年   611篇
  2002年   554篇
  2001年   749篇
  2000年   511篇
  1999年   301篇
  1998年   282篇
  1997年   242篇
  1996年   263篇
  1995年   291篇
  1994年   298篇
  1993年   259篇
  1992年   279篇
  1991年   235篇
  1990年   274篇
  1989年   255篇
  1988年   214篇
  1987年   188篇
  1986年   176篇
  1985年   193篇
  1984年   212篇
  1983年   203篇
  1982年   212篇
  1981年   209篇
  1980年   167篇
  1979年   172篇
  1978年   152篇
  1977年   125篇
  1975年   123篇
  1974年   121篇
  1973年   115篇
  1972年   141篇
排序方式: 共有10000条查询结果,搜索用时 404 毫秒
971.
Street sweeping is often proposed as a means of reducing the emissions from paved roads. The objective of this study was to evaluate the effectiveness of street sweeping on ambient particulate matter concentrations and to determine the difference In source contributions to PM10 concentrations between street sweeping and non-street sweeping periods.

Chemically-speciated measurements of PM10 and PM2.5 were taken in the commercial section of Reno, Nevada, for a one-month sampling period. The Chemical Mass Balance (CMB) model was applied to these data and an average of approximately 50 percent of the PM10 was apportioned to resuspended geological material. During half of the sampling period, streets In the vicinity of the sampling site were completely swept with a regenerative-air vacuum sweeper, while no sweeping was performed during the remainder of the experiment. Ratios of primary geological contributions divided by primary motor vehicle contributions to PM10 were compared between sweeping and non-sweeping periods using analysis of variance. This ratio of source contributions minimizes the effects of variations in traffic volume and meteorological dispersion. No significant differences in geological contributions to PM10 were detected as a result of regenerative-air vacuum street sweeping.  相似文献   
972.
Laboratory evaluation of the efficacy of soil phase photodegradation of recalcitrant hazardous organic components of wood treating wastes is described. The photodecomposition of anthracene, biphenyl, 9H-carbazole, m-cresol, dibenzofuran, fluorene, pentachlorophenol, phenanthrene, pyrene and quinoline under UV and visible light was monitored over a 50-day reaction period in three test soils. Methylene blue, riboflavin, hydrogen peroxide, peat moss and diethylamine soil amendments were evaluated as to their effect on the enhancement of compound photoreaction rates in the test soil systems. Dark control samples monitored over the entire study period were utilized to quantify non-photo mediated reaction losses. Compounds losses in both the dark control and irradiated samples were found to follow first order kinetics, allowing the calculation of first order photodegradation reaction rate constants for each test soil/compound combination. Degradation due to photochemical activity was observed for all test compounds, with compound photolytic half-lives ranging from 7 to approximately 180 days. None of the soil amendments were found to improve soil phase photodegradation, although photosensitization by anthracene was shown to significantly enhance the rate of photodegradation of the other test compounds. Soil type, and its characteristic of internal reflectance, proved to be the most significant factor affecting compound degradation rates suggesting the necessity for site specific assessments of soil phase photodegradation potential.  相似文献   
973.
The Kanawha Valley region of West Virginia which is comprised of Charleston and surrounding communities Is the center of a heavily industrialized area known for its chemical manufacturing. As part of a larger study designed to investigate the Impact of the chemical industry on human exposures to volatile organic compounds (VOC), a study of the relationship between indoor and outdoor concentrations was conducted. Thirty-five homes were selected for monitoring from among volunteers; approximately ten in each of three distinct population-industry centers and four outside the Valley to act as controls. Monitoring was performed using passive, badge samplers with a three-week monitoring period. Two separate questionnaires were administered: one for characterization of the residence; and one to characterize source use during monitoring. Participants were also asked to keep a record of their activities with respect to in-home, outdoors and other Indoor environments. Analysis of the samplers was performed by solvent extraction followed by gas chromatography using a flame-ionization detector. Results suggest that indoor VOC concentrations are higher than outdoor concentrations. Additionally, certain ventilation-related parameters were identified that afforded some predictive power for indoor concentrations. No statistically significant differences between regions were identified.  相似文献   
974.
An intensive field study was conducted in Research Triangle Park, North Carolina in the fall of 1986. Ambient concentrations of the following constituents were obtained: nitric acid, nitrous acid, nitrogen dioxide, sulfur dioxide, ammonia, hydrogen ion, and particulate nitrate, sulfate, and ammonium. Results collected using the annular denuder system (ADS) and the transition flow reactor (TFR) are presented and compared.

Both types of samplers had operational detection limits on daily (22-hour) samples that were generally below 1 μg m-3 suggesting that both samplers can provide sensitive measurements for most of the constituents of interest. Both the ADS and TFR show reasonable (>25 percent) within-sampler precision for most of the measured species concentrations, except TFR fine particulate nitrate measurements where results were frequently negative (The TFR fine particulate nitrate measurement is calculated using subtraction of positive numbers).

Comparison of ADS and TFR daily results showed good agreement for total particulate sulfate, the sum of total (coarse plus fine) particulate and gaseous nitrate, and ammonia. As a result of different inlet particle collection efficiencies, the ADS fine particulate sulfate exceeded the TFR (5 percent). In the absence of a filter to collect volatilized particulate ammonium in the ADS, the sum of total particulate and gaseous ammonium in the TFR exceeded that in the ADS. Of potentially more importance, ADS measurements of SO2 and H+ exceeded those of the TFR, while TFR measurements of HNO3 exceeded those of the ADS. Results of this study suggest that the TFR may provide biased measurements of SO2, H+, HNO3, and Fine NO3 - that cannot be corrected without modifications to the fundamental design of the sampling system.  相似文献   
975.
This paper describes a laboratory project to assess the accuracy of emission and indoor air quality models to be used in predicting formaldehyde (HCHO) concentrations in residences due to pressed-wood products made with urea-formaldehyde bonding resins. The products tested were partlcleboard underlayment, hardwood- plywood paneling and medium-density fiberboard (mdf). The products were initially characterized in chambers by measuring their formaldehyde surface emission rates over a range of formaldehyde concentrations, air exchange rates and two combinations of temperature and relative humidity (23° C and 5 0% RH; 26°C and 60% RH). They were then installed in a two-room prototype house in three different combinations (underlayment flooring only; underlayment flooring and paneling; and underlayment flooring, paneling, and mdf). The equilibrium formaldehyde concentrations were monitored as a function of air exchange rate. Particleboard underlayment and mdf, but not paneling, behaved as the emission model predicted over a large concentration range, under both sets of temperature and relative humidity. Good agreement was also obtained between measured formaldehyde concentrations and those predicted by a mass-balance indoor air quality model.  相似文献   
976.
With landfill costs increasing and regulations on landfilling becoming more stringent, alternatives to conventional hazardous waste treatment strategies are becoming more desirable. Incineration Is presently a permanent, proven solution for the disposal of most organic contaminants, but also a costly one, especially in the case of solids which require some auxiliary fuel. The goal of this research is to develop an understanding of the phenomena associated with the evolution of contaminants from solids In the primary combustor of an Incineration system. A four-fold approach is being used. First, a bench-scale particle characterization reactor was developed to study the transport phenomena on a particle basis, where the controlling processes are mainly intraparticle. Second, a bed-characterization reactor was built to examine the controlling transport phenomena within a bed of particles, where the processes are primarily interparticle. The results of these studies can be applied to any primary combustor. A pilot-scale rotary kiln was developed to study the evolution of contaminants from solids within a realistic temperature and rotation environment. Finally, in situ measurements are being obtained from a full-scale rotary-kiln.

This paper describes results obtained in a study using a commercial sorbent contaminated with toluene. The data are from the particle-characterization reactor and the rotary-kiln simulator. The results show that the method of contamination and charge size do not have a large effect on desorption, while temperature and contaminant concentration are important parameters In the evolution of contaminants in a rotary kiln.  相似文献   
977.
Carbon dioxide emissions, on an equivalent energy basis, were calculated for 504 North American coals to explore the effects of coal rank and sulfur content on CO2 emissions. The data set included coals ranging in rank from lignite through low-volatile bituminous from 15 U.S. states and Alberta, Canada. Carbon dioxide emissions were calculated from the carbon content and gross calorific value of each coal. The lowest CO2 emissions are calculated for the high-volatile bituminous coals (198 to 211 lbs CO2/MMBtu) and the highest for lignites and subbituminous coals (209 to 224 lbs CO2/MMBtu). The lower CO2 emissions from the high-volatile bituminous coals result in part from their generally higher sulfur content. However, even at equivalent sulfur contents the high-volatile bituminous coals give lower CO2 emissions than the lower-rank coals. On average, the lowerrank coals produce 5 percent more CO2 upon combustion than the highvolatile bituminous coals, on the basis of gross calorific value. This difference increases to 9 percent on the basis of estimated net calorific value. The net calorific value is better indicator of power plant energy production than the gross calorific value. The difference in CO2 emissions resulting from the use of high-volatile bituminous coals and lower-rank coals is of the same order of magnitude as reductions expected from near-term combustion efficiency improvements. These results are useful to those interested in current and future CO2 emissions resulting from coal combustion.  相似文献   
978.
979.
The removal of SO2 with atomization of a slaked lime slurry and supplemental injection of gaseous NH3 were tested in a conventional spray dryer/baghouse system for SO2 concentrations of 2000 ppm and 3000 ppm and a 30° F approach to saturation. Results at 3000 ppm of SO2 showed an average SO2 removal efficiency of 90.3 percent at a combined stoichiometric ratio of 0.95-1.10 and an average overall sorbent utilization of 91.6 percent. The overall molal ratio of NH3/SO2 reaction was found to be 2:1 under the test conditions Particle size analyses, and EP toxicity tests were conducted on the products of the reactions.  相似文献   
980.
Evaluation of Indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters.

The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA’s Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed In large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA’s IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on “sink” surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号