首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22242篇
  免费   195篇
  国内免费   180篇
安全科学   576篇
废物处理   885篇
环保管理   3026篇
综合类   4311篇
基础理论   5839篇
环境理论   13篇
污染及防治   5185篇
评价与监测   1395篇
社会与环境   1312篇
灾害及防治   75篇
  2022年   130篇
  2021年   152篇
  2019年   136篇
  2018年   349篇
  2017年   364篇
  2016年   579篇
  2015年   347篇
  2014年   443篇
  2013年   1506篇
  2012年   917篇
  2011年   954篇
  2010年   605篇
  2009年   702篇
  2008年   817篇
  2007年   899篇
  2006年   780篇
  2005年   1149篇
  2004年   1298篇
  2003年   1163篇
  2002年   625篇
  2001年   711篇
  2000年   473篇
  1999年   358篇
  1998年   240篇
  1997年   246篇
  1996年   278篇
  1995年   288篇
  1994年   292篇
  1993年   261篇
  1992年   239篇
  1991年   246篇
  1990年   235篇
  1989年   201篇
  1988年   204篇
  1987年   181篇
  1986年   187篇
  1985年   179篇
  1984年   197篇
  1983年   199篇
  1982年   214篇
  1981年   188篇
  1980年   155篇
  1979年   150篇
  1978年   158篇
  1977年   144篇
  1976年   115篇
  1975年   117篇
  1974年   131篇
  1971年   104篇
  1967年   103篇
排序方式: 共有10000条查询结果,搜索用时 193 毫秒
591.
Nitrogen removal in laboratory model leachfields with organic-rich layers   总被引:1,自引:0,他引:1  
Septic system leachfields can release dissolved nitrogen in the form of nitrate into ground water, presenting a significant source of pollution. Low cost, passive modifications, which increase N removal in traditional leachfields, could substantially reduce the overall impact on ground water resources. Bench-scale laboratory models were constructed to evaluate the effect of placing an organic layer below the leachfield on total N removal. The organic layer provides a carbon source for denitrification. Column units representing septic leachfields were constructed with sawdust-native soil organic layers placed 0.45 m below the influent line and with thicknesses of 0.0, 0.3, 0.6, and 0.9 m. Using a synthetic septic tank effluent, NO(3)-N concentrations at 3.8 m below the influent line were consistently below 1 mg L(-1) during 10 months of operation compared with a NO(3)-N concentration of nearly 12 mg L(-1) in the control column. The average total N removal increased from 31% without the organic layer to 67% with the organic layer. Total N removal appeared limited by the extent of organic N oxidation and nitrification in the 0.45-m aerobic zone. Design modifications targeted at improving nitrification above the organic layer may further increase total N removal. Increased organic layer thicknesses from 0.3 m to 0.9 m did not significantly improve average total N removal, but caused a shift in residual nitrogen from organic N to ammonia N. Results indicate that addition of a layer of carbon source material at least 0.3 m thick below a standard leachfield substantially improves total N removal.  相似文献   
592.
Simple models for phosphorus loss from manure during rainfall   总被引:1,自引:0,他引:1  
Mechanistic, predictive equations for phosphorus (P) transport in runoff from manure-applied fields constitute a critical knowledge gap for developing nonpoint-source pollution models. We derived two simple equations to describe the P release from animal manure during a rainfall event-one based on first-order P desorption kinetics and one based on second-order kinetics. The manure characteristics needed in the two kinetic equations are the maximum amount of water-extractable phosphorus (WEP) and a characteristic desorption time. Water-extractable P can be measured directly but currently the characteristic time can only be obtained by fitting experimental data. In addition, we evaluated two models usually used to estimate P loss from soil, the Elovitch equation and power function, both of which relate P loss to time. The models were tested against previously published data of P release from different manures under laboratory conditions. All equations fit the data well. Of the two kinetic equations, the second-order model showed better agreement with the data than the first-order model; for example, maximum relative differences between the model results and measured data were 2.6 and 4.7%, respectively. The characteristic times varied between 20 min for dairy manure and almost 100 min for poultry manure. The characteristic time did not appear to change with flow rate but decreased with smaller manure aggregates. The parameters for power-function relationships could not be related to measured manure characteristics. These results provide the first step to process-based approximations for predicting P release from manure with time during rainfall shortly after land application, when P losses are the greatest.  相似文献   
593.
A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.  相似文献   
594.
595.
596.
ABSTRACT: An extensive base of water quality information emphasizing the effects of land use and hydrology was obtained in the karstified Fountain Creek watershed of southwestern Illinois to help resolve local water quality issues. Agrichemicals dominate the loads of most water quality constituents in the streams and shallow karstic ground water. Only calcium (Ca), magnesium (Mg), Aluminum (A1), and sulfate (SO4) ions are predominantly derived from bedrock or soils, while agrichemicals contribute most of the sodium (Na), potassium (K), chlorine (Cl), nitrate (NO3), fluorine (F), phosphorus (P), and atrazine. Concentrations of individual ions correlate with discharge variations in karst springs and surface streams; highly soluble ions supplied by diffuse ground water are diluted by high flows, while less soluble ions increase with flow as they are mobilized from fields to karst conduits under storm conditions. Treated wastewater containing detergent residues dominates the boron load of streams and provides important subordinate loads of several other constituents, including atrazine derived from the Mississippi River via the public water supply. Average surface water concentrations at the watershed outlet closely approximate a 92:8 mixture of karst ground water and treated wastewater, demonstrating the dominance of ground water contributions to streams. Therefore the karst aquifer and watershed streams form a single water quality system that is also affected by wastewater effluent.  相似文献   
597.
ABSTRACT: Water quality indicators of two agriculturally impacted karst areas in southeastern West Virginia were studied to determine the water quality effects of grazing agriculture and water quality trends following initiation of water quality improvement programs. Both areas are tributaries of the Greenbrier River and received funding for best management practices under the President's Initiative for Water Quality and then under the Environmental Quality Incentives Program (EQIP). After 11 years of study there was little evidence to suggest that water quality improved in one area. Three and a half years of study in the other area showed little evidence of consistent water quality improvement under EQIP. Lack of consistent water quality improvement at the catchment scale does not imply that the voluntary programs were failures. Increased livestock numbers as a result of successful changes in forage management practices may have overridden water quality improvements achieved through best management practices. Practices that target well defined contributing areas significantly impacting aquifer water quality might be one way to improve water quality at catchment scales in karst basins. For example, a significant decrease in fecal coliform concentrations was observed in subterranean drainage from one targeted sinkhole after dairy cattle were permanently excluded from the sinkhole.  相似文献   
598.
ABSTRACT: High springtime river flows came earlier by one to two weeks in large parts of northern New England during the 20th Century. In this study it was hypothesized that late spring/early summer recessional flows and late summer/early fall low flows could also be occurring earlier. This could result in a longer period of low flow recession and a decrease in the magnitude of low flows. To test this hypothesis, variations over time in the magnitude and timing of low flows were analyzed. To help understand the relation between low flows and climatic variables in New England, low flows were correlated with air temperatures and precipitation. Analysis of data from 23 rural, unregulated rivers across New England indicated little evidence of consistent changes in the timing or magnitude of late summer/early fall low flows during the 20th Century. The interannual variability in the timing and magnitude of the low flows in northern New England was explained much more by the interannual variability in precipitation than by the interannual variability of air temperatures. The highest correlation between the magnitude of the low flows and air temperatures was with May through November temperatures (r =?0.37, p= 0.0017), while the highest correlation with precipitation was with July through August precipitation (r = 0.67, p > 0.0001).  相似文献   
599.
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).  相似文献   
600.
This paper examines the relationships between measurable watershed hydrologic features, base flow recession rates, and the Q7,10 low flow statistic (the annual minimum seven‐day average streamflow occurring once every 10 years on average). Base flow recession constants were determined by analyzing hydrograph recession data from 24 small (>130 km2), unregulated watersheds across five major physiographic provinces of Pennsylvania, providing a highly variable dataset. Geomorphic, hydrogeologic, and land use parameters were determined for each watershed. The base flow recession constant was found to be most strongly correlated to drainage density, geologic index, and ruggedness number (watershed slope); however, these three parameters are intercorrelated. Multiple regression models were developed for predicting the recession rate, and it was found that only two parameters, drainage density and hydrologic soil group, were required to obtain good estimates of the recession constant. Equations were also developed to relate the recession rates to Q7,10 per unit area, and to the Q7,10/Q50 ratio. Using these equations, estimates of base flow recession rates, Q7,10, and streamflow reduction under drought conditions can be made for small, ungaged basins across a wide range of physiography.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号