首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20454篇
  免费   193篇
  国内免费   141篇
安全科学   594篇
废物处理   756篇
环保管理   2759篇
综合类   5620篇
基础理论   4358篇
环境理论   9篇
污染及防治   4792篇
评价与监测   1072篇
社会与环境   738篇
灾害及防治   90篇
  2018年   239篇
  2017年   245篇
  2016年   362篇
  2015年   281篇
  2014年   386篇
  2013年   1559篇
  2012年   495篇
  2011年   678篇
  2010年   600篇
  2009年   676篇
  2008年   717篇
  2007年   771篇
  2006年   645篇
  2005年   573篇
  2004年   612篇
  2003年   577篇
  2002年   528篇
  2001年   672篇
  2000年   482篇
  1999年   327篇
  1998年   252篇
  1997年   236篇
  1996年   251篇
  1995年   281篇
  1994年   298篇
  1993年   252篇
  1992年   267篇
  1991年   267篇
  1990年   283篇
  1989年   258篇
  1988年   213篇
  1987年   207篇
  1986年   213篇
  1985年   210篇
  1984年   228篇
  1983年   217篇
  1982年   235篇
  1981年   245篇
  1980年   192篇
  1979年   203篇
  1978年   170篇
  1977年   166篇
  1976年   150篇
  1974年   156篇
  1973年   151篇
  1968年   156篇
  1967年   185篇
  1966年   158篇
  1965年   150篇
  1964年   153篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
891.
Abstract: Multilevel or hierarchical models have been applied for a number of years in the social sciences but only relatively recently in the environmental sciences. These models can be developed in either a frequentist or Bayesian context and have similarities to other methods such as empirical Bayes analysis and random coefficients regression. In essence, multilevel models take advantage of the hierarchical structure that exists in many multivariate datasets; for example, water quality measurements may be taken from individual lakes, lakes are located in various climatic zones, lakes may be natural or man‐made, and so on. The groups, or levels, may effectively yield different responses or behaviors (e.g., nutrient load response in lakes) that often make retaining group membership more effective when developing a predictive model than when working with either all of the data together or working separately with the individuals. Here, we develop a multilevel model of the impact of farm level best management practices (BMPs) on phosphorus runoff. The result of this research is a model with parameters which vary with key practice categories and thus may be used to evaluate the effectiveness of these practices on phosphorus runoff. For example, it was found that the effect of fertilizer application rate on farm‐scale phosphorus loss is a function of the application method, the hydrologic soil group, and the land use (crop type). Further, results indicate that the most effective method for controlling fertilizer loss is through soil injection. In summary, the resultant multilevel model can be used to estimate phosphorus loss from farms and hence serve as a useful tool for BMP selection.  相似文献   
892.
Abstract: The potential of remotely sensed time series of biophysical states of landscape to characterize soil moisture condition antecedent to radar estimates of precipitation is assessed in a statistical prediction model of streamflow in a 1,420 km2 watershed in south‐central Texas, Moderate Resolution Imaging Spectroradiometer (MODIS) time series biophysical products offer significant opportunities to characterize and quantify hydrologic state variables such as land surface temperature (LST) and vegetation state and status. Together with Next Generation Weather Radar (NEXRAD) precipitation estimates for the period 2002 through 2005, 16 raw and deseasoned time series of LST (day and night), vegetation indices, infrared reflectances, and water stress indices were linearly regressed against observed watershed streamflow on an eight‐day aggregated time period. Time offsets of 0 (synchronous with streamflow event), 8, and 16 days (leading streamflow event) were assessed for each of the 16 parameters to evaluate antecedent effects. The model results indicated a reasonable correlation (r2 = 0.67) when precipitation, daytime LST advanced 16 days, and a deseasoned moisture stress index were regressed against log‐transformed streamflow. The estimation model was applied to a validation period from January 2006 through March 2007, a period of 12 months of regional drought and base‐flow conditions followed by three months of above normal rainfall and a flood event. The model resulted in a Nash‐Sutcliffe estimation efficiency (E) of 0.45 for flow series (in log‐space) for the full 15‐month period, ?0.03 for the 2006 drought condition period, and 0.87 for the 2007 wet condition period. The overall model had a relative volume error of ?32%. The contribution of parameter uncertainties to model discrepancy was evaluated.  相似文献   
893.
Abstract: We proposed a step‐by‐step approach to quantify the sensitivity of ground‐water discharge by evapotranspiration (ET) to three categories of independent input variables. To illustrate the approach, we adopt a basic ground‐water discharge estimation model, in which the volume of ground water lost to ET was computed as the product of the ground‐water discharge rate and the associated area. The ground‐water discharge rate was assumed to equal the ET rate minus local precipitation. The objective of this study is to outline a step‐by‐step procedure to quantify the contributions from individual independent variable uncertainties to the uncertainty of total ground‐water discharge estimates; the independent variables include ET rates of individual ET units, areas associated with the ET units, and precipitation in each subbasin. The specific goal is to guide future characterization efforts by better targeting data collection for those variables most responsible for uncertainty in ground‐water discharge estimates. The influential independent variables to be included in the sensitivity analysis are first selected based on the physical characteristics and model structure. Both regression coefficients and standardized regression coefficients for the selected independent variables are calculated using the results from sampling‐based Monte Carlo simulations. Results illustrate that, while as many as 630 independent variables potentially contribute to the calculation of the total annual ground‐water discharge for the case study area, a selection of seven independent variables could be used to develop an accurate regression model, accounting for more than 96% of the total variance in ground‐water discharge. Results indicate that the variability of ET rate for moderately dense desert shrubland contributes to about 75% of the variance in the total ground‐water discharge estimates. These results point to a need to better quantify ET rates for moderately dense shrubland to reduce overall uncertainty in estimates of ground‐water discharge. While the approach proposed here uses a basic ground‐water discharge model taken from an earlier study, the procedure of quantifying uncertainty and sensitivity can be generalized to handle other types of environmental models involving large numbers of independent variables.  相似文献   
894.
Abstract: Urbanization represents a strong and increasingly more prevalent impact on stream quality worldwide. One of the characteristic effects of increased urbanization is a consistent decline in biological stream condition. The characterization of this biological degradation with increasing urbanization presents a number of advantages for the study and management of urban streams and catchments. In this paper, the limitation of biological condition with urbanization, called observed biological potential, is characterized. Using an urban intensity index and a biological index developed specifically for urban systems in the Baltimore, Maryland; Cleveland, Ohio; and San Jose, California regions, two principal techniques were compared (quantile regression and bin regression) to define observed biological potential along urban gradients. Quantile regression was selected as the preferable tool for describing observed biological potential given the consistency with which it can be applied and its statistical efficiency, however, bin quantile regression performed similarly. Having identified a numeric approximation of observed biological potential, two methods for identifying factors related to distance from potential as a way of identifying critical environmental factors affecting biological condition in urban areas were explored. The results of this work can be used for identifying benchmarks for urban stream biological condition, identifying limiting catchment characteristics, and prioritizing urban stream management efforts.  相似文献   
895.
896.
897.
898.
Abstract: A present and future challenge for water resources engineers is to extend the useful life of our dams and reservoirs. Ongoing reservoir sedimentation in impoundments must be addressed; sedimentation in many reservoirs already limits project benefits and effective project life. Sustainability requires that incoming sediment be moved downstream past the impounding dam. We use Lewis and Clark Lake, the most downstream of the six Missouri River main stem reservoirs, to demonstrate how a reservoir in advanced stages of its project life could be converted to a sustainable system with local benefits exceeding costs by a factor of 1.5. Full consideration of benefits would further enhance project justification. The proposed strategy involves four phases that will take about 50 years to complete. Cost estimates for this potential project range from the quantitative to the plausible, but it is clear that the results justify a full engineering, environmental, and economic study of this model project. If implemented, the project will create scientific knowledge and develop technologies useful for achieving sustainability at many other reservoirs in the Mississippi River basin and beyond.  相似文献   
899.
Young, Charles A., Marisa I. Escobar‐Arias, Martha Fernandes, Brian Joyce, Michael Kiparsky, Jeffrey F. Mount, Vishal K. Mehta, David Purkey, Joshua H. Viers, and David Yates, 2009. Modeling the Hydrology of Climate Change in California’s Sierra Nevada for Subwatershed Scale Adaptation. Journal of the American Water Resources Association (JAWRA) 45(6):1409‐1423. Abstract: The rainfall‐runoff model presented in this study represents the hydrology of 15 major watersheds of the Sierra Nevada in California as the backbone of a planning tool for water resources analysis including climate change studies. Our model implementation documents potential changes in hydrologic metrics such as snowpack and the initiation of snowmelt at a finer resolution than previous studies, in accordance with the needs of watershed‐level planning decisions. Calibration was performed with a sequence of steps focusing sequentially on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. An assessment of the calibrated streamflows using goodness of fit statistics indicate that the model robustly represents major features of weekly average flows of the historical 1980‐2001 time series. Runs of the model for climate warming scenarios with fixed increases of 2°C, 4°C, and 6°C for the spatial domain were used to analyze changes in snow accumulation and runoff timing. The results indicated a reduction in snowmelt volume that was largest in the 1,750‐2,750 m elevation range. In addition, the runoff center of mass shifted to earlier dates and this shift was non‐uniformly distributed throughout the Sierra Nevada. Because the hydrologic model presented here is nested within a water resources planning system, future research can focus on the management and adaptation of the water resources system in the context of climate change.  相似文献   
900.
Laypeople's acceptance and perception of Carbon Dioxide Capture and Storage (CCS) can have an influence on its political feasibility. It is important, therefore, to study how laypeople perceive CCS and which cognitions they hold with respect to this technique. We conducted in-depth interviews with laypeople (N = 16) to explore their mental concepts of CCS. Little knowledge about CCS was detected among laypeople. We also found that laypeople fear that a deployment of CCS could create incentives that would hinder a sustainable development of the energy economy. A misunderstanding of the concepts of hydro- and geostatic pressure, as well as a lack of knowledge about the physical–chemical properties of carbon dioxide seemed to trigger fundamental rejection of CCS among some laypeople. This qualitative study identifies concepts that underlie CCS perception, and these should be objects of future studies. We provide some suggestions for risk management and communication about CCS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号