首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   1篇
  国内免费   6篇
安全科学   16篇
废物处理   28篇
环保管理   28篇
综合类   36篇
基础理论   64篇
环境理论   1篇
污染及防治   120篇
评价与监测   38篇
社会与环境   16篇
  2023年   18篇
  2022年   33篇
  2021年   24篇
  2020年   6篇
  2019年   6篇
  2018年   10篇
  2017年   11篇
  2016年   9篇
  2015年   5篇
  2014年   19篇
  2013年   43篇
  2012年   14篇
  2011年   18篇
  2010年   10篇
  2009年   13篇
  2008年   11篇
  2007年   14篇
  2006年   6篇
  2005年   12篇
  2004年   10篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
  1965年   2篇
  1964年   1篇
  1963年   3篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
  1955年   2篇
  1929年   1篇
排序方式: 共有347条查询结果,搜索用时 31 毫秒
21.
Harbour seals and harbour porpoises are top predator species from the North Sea, have long life spans and hence, are known to accumulate high levels of anthropogenic contaminants. To gain knowledge about the behaviour of naturally-produced compounds in these marine mammals, the biomagnification of naturally-produced methoxylated polybrominated diphenyl ethers (MeO-PBDEs) was assessed. The biomagnification of MeO-PBDEs (2′-MeO-BDE 68 and 6-MeO-BDE 47) was lower in harbour seals (all biomagnification factors (BMFs) < 1) compared to the same age–gender groups of the harbour porpoises (all BMFs > 1). This may indicate a better metabolic breakdown of MeO-PBDEs in harbour seals, as was previously suggested for polybrominated diphenyl ethers (PBDEs). In both predators, 6-MeO-BDE 47 had the highest concentrations (range: 45–483 ng/g lw and 2–38 ng/g lw for harbour porpoises and seals, respectively) compared to 2′-MeO-BDE 68 (range: 2–28 ng/g lw and 1–6 ng/g lw for harbour porpoises and seals, respectively). In general, the highest concentrations were found in juveniles, suggesting an increased biotransformation capacity with age or the influence of dilution by growth for both species. Here we show that naturally-produced brominated organic compounds can biomagnify and accumulate in North Sea top predators, although to a lesser extent than anthropogenic lipophilic contaminants, such as polychlorinated biphenyls (PCBs) or PBDEs.  相似文献   
22.
The use of sustainable, green and biodegradable natural wastes for Cr(VI) detoxification from the contaminated wastewater is considered as a challenging issue. The present research is aimed to assess the effectiveness of seven different natural biomaterials, such as jackfruit leaf, mango leaf, onion peel, garlic peel, bamboo leaf, acid treated rubber leaf and coconut shell powder, for Cr(VI) eradication from aqueous solution by biosorption process. Characterizations were conducted using SEM, BET and FTIR spectroscopy. The effects of operating parameters, viz., pH, initial Cr(VI) ion concentration, adsorbent dosages, contact time and temperature on metal removal efficiency, were studied. The biosorption mechanism was described by the pseudo-second-order model and Langmuir isotherm model. The biosorption process was exothermic, spontaneous and chemical (except garlic peel) in nature. The sequence of adsorption capacity was mango leaf > jackfruit leaf > acid treated rubber leaf > onion peel > bamboo leaf > garlic peel > coconut shell with maximum Langmuir adsorption capacity of 35.7 mg g?1 for mango leaf. The treated effluent can be reused. Desorption study suggested effective reuse of the adsorbents up to three cycles, and safe disposal method of the used adsorbents suggested biodegradability and sustainability of the process by reapplication of the spent adsorbent and ultimately leading towards zero wastages. The performances of the adsorbents were verified with wastewater from electroplating industry. The scale-up study reported for industrial applications. ANN modelling using multilayer perception with gradient descent (GD) and Levenberg-Marquart (LM) algorithm had been successfully used for prediction of Cr(VI) removal efficiency. The study explores the undiscovered potential of the natural waste materials for sustainable existence of small and medium sector industries, especially in the third world countries by protecting the environment by eco-innovation.  相似文献   
23.
Diclofenac, a non-steroidal anti-inflammatory drug (NSAID), has caused catastrophic vulture declines across the Indian sub-continent. Here, an indirect ELISA is used to detect and quantify diclofenac in 1251 liver samples from livestock carcasses collected across India between August 2007 and June 2008, one to two years after a ban on diclofenac manufacture and distribution for veterinary use was implemented. The ELISAs applicability was authenticated with independent data obtained using LC-ESI/MS. Of 1251 samples, 1150 (91.9%) were negative for diclofenac using both methods, and 60 (4.8%) were positive at 10-4348 and 10-4441 μg kg(-1) when analysed by ELISA and LC-ESI/MS, respectively. The residue level relationship in the 60 positive samples was highly significant (p < 0.001, r(2) = 0.644). Data suggest that this immunological assay could be used not only for cost effective sample screening, but also for residue level semi-quantification.  相似文献   
24.
The adsorption of crystal violet from aqueous solution by NaOH-modified rice husk was investigated in a laboratory-scale fixed-bed column. A two-level three factor (23) full factorial central composite design with the help of Design Expert Version 7.1.6 (Stat Ease, USA) was used for optimisation of the dynamic dye adsorption process and evaluation of interaction effects of different operating parameters: initial dye concentration (100–200 mg L?1), flow rate (10–30 mL min?1) and bed height (5–25 cm). A correlation coefficient (R 2) value of 0.999, model F value of 1,936.59 and its low p value (<0.0001) along with lower value of coefficient of variation (1.38 %) indicated the fitness of the response surface quadratic model developed during the present study. Numerical optimisation applying desirability function was used to identify the optimum conditions for a targeted breakthrough time of 12 h. The optimum conditions were found to be initial solution pH?=?8.00, initial dye concentration?=?100 mg L?1, flow rate?=?22.88 mL min?1 and bed height?=?18.75 cm. A confirmatory experiment was performed to evaluate the accuracy of the optimised procedure. Under the optimised conditions, breakthrough appeared after 12.2 h and the column efficiency was determined as 99 %. The Thomas model showed excellent fit to the dynamic dye adsorption data obtained from the confirmatory experiment. Thereby, it was concluded that the current investigation gives valuable insights for designing and establishing a continuous wastewater treatment plant.  相似文献   
25.
There is evidence that over the last 30 years, there have been mass declines in diverse geographic locations among amphibian populations due to disease outbreaks. Multiple causes have been suggested to explain this increase in disease incidence. Among these, climate changes, environmental pollution and reduced water quality are gaining attention. Indeed, some chemicals of environmental concerns are known to alter the immune system. It is possible that exposure to these pollutants could alter the immune system of anurans and render them more susceptible to different pathogens. In this study, we sampled Rana pipiens in five different sites near St. Lawrence River (Quebec, Canada) during the months of July and September in 2001. Two of these sites were protected areas, in which low levels of pesticides were detected, while the remaining three sites were located in areas with intensive corn and soybeans cultivations. Our results demonstrated that frogs living in agricultural regions are smaller in size and weight than frogs living in areas with lower levels of pesticides at both sampling times. Moreover, we have observed a significant decrease in the number of splenocytes (cellularity) and the phagocytic activity in frogs sampled in impacted sites. Taken together, these results suggest that frogs living in agricultural regions might be more vulnerable to infections and diseases through their smaller size and alteration of their immune system. Our results also contribute to the overall discussion on factors involved in amphibian declines.  相似文献   
26.
Influence of biochar on nitrogen fractions in a coastal plain soil   总被引:3,自引:0,他引:3  
Interest in the use of biochar from pyrolysis of biomass to sequester C and improve soil productivity has increased; however, variability in physical and chemical characteristics raises concerns about effects on soil processes. Of particular concern is the effect of biochar on soil N dynamics. The effect of biochar on N dynamics was evaluated in a Norfolk loamy sand with and without NHNO. High-temperature (HT) (≥500°C) and low-temperature (LT) (≤400°C) biochars from peanut hull ( L.), pecan shell ( Wangenh. K. Koch), poultry litter (), and switchgrass ( L.) and a fast pyrolysis hardwood biochar (450-600°C) were evaluated. Changes in inorganic, mineralizable, resistant, and recalcitrant N fractions were determined after a 127-d incubation that included four leaching events. After 127 d, little evidence of increased inorganic N retention was found for any biochar treatments. The mineralizable N fraction did not increase, indicating that biochar addition did not stimulate microbial biomass. Decreases in the resistant N fraction were associated with the high pH and high ash biochars. Unidentified losses of N were observed with HT pecan shell, HT peanut hull, and HT and LT poultry litter biochars that had high pH and ash contents. Volatilization of N as NH in the presence of these biochars was confirmed in a separate short-term laboratory experiment. The observed responses to different biochars illustrate the need to characterize biochar quality and match it to soil type and land use.  相似文献   
27.
We investigated the influence on bacterial community and biochemical variables through mechanical disturbance of sediment-akin to small-scale mining in Kalbadevi beach, Ratnagiri, a placer-rich beach ecosystem which is a potential mining site. Changes were investigated by comparing three periods, namely phase I before disturbance, phase II just after disturbance, and phase III 24 h after disturbance as the bacterial generation time is ≤7 h. Cores from dune, berm, high-, mid-, and low-tide were examined for changes in distribution of total bacterial abundance, total direct viability (counts under aerobic and anaerobic conditions), culturability and biochemical parameters up to 40 cm depth. Results showed that bacterial abundance decreased by an order from 106 cells g − 1 sediment, while, viability reduced marginally. Culturability on different-strength nutrient broth increased by 155% during phase II. Changes in sedimentary proteins, carbohydrates, and lipids were marked at berm and dune and masked at other levels by tidal influence. Sedimentary ATP reduced drastically. During phase III, Pearson’s correlation between these variables evolved from non-significant to significant level. Thus, simulated disturbance had a mixed effect on bacterial and biochemical variables of the sediments. It had a negative impact on bacterial abundance, viability and ATP but positive impact on culturability. Viability, culturability, and ATP could act as important indicators reflecting the disturbance in the system at short time intervals. Culturability, which improved by an order, could perhaps be a fraction that contributes to restoration of the system at bacterial level. This baseline information about the potential mining site could help in developing rational approach towards sustainable harnessing of resources with minimum damage to the ecosystem.  相似文献   
28.
The concentrations of ammonium NH4+, nitrate NO3-, and nitrite NO2- ions were recorded along with ammonia (NH(3)) emission from a fertilized rice field located in the Kwangju province in South Korea over a period of 4 months (June to October 2006). The highest magnitude of NH(3) flux was 20,754 microg m(-2) h(-1), while the average flux value over the entire sampling period was 2,395 microg m(-2) h(-1). The highest ionic concentrations were 1.67, 0.44, and 0.71 ppm for NH4+, NO3-, and NO2- ions, respectively. Possible effects of soil pH on NH(3) fluxes were detected, as they concurrently exhibited a gradual and periodic change during the sampling period. Positive correlations existed between concentrations of NH4+ and NO2- ions and the soil pH. Positive correlations also existed between NH(3) emission flux and ambient (and water) temperatures. Results indicated that fertilizer application to rice can lead to significant emission of NH(3) along with NH4+ and NO3- ions.  相似文献   
29.
Degradation of flubendiamide as affected by microbial population count in two Indian soils (red and alluvial) varying in physicochemical properties was studied under sterile and non-sterile conditions. Recovery of flubendiamide in soil was in the range of 94.7–95.9 % at 0.5 and 1.0 μg g?1, respectively. The DT50 of flubendiamide at the level of 10 μg g?1 in red soil under sterile and non-sterile conditions was found to be 140.3 and 93.7 days, respectively, and in alluvial soil under sterile and non-sterile condition was 181.1 and 158.4 days, respectively. Residues of flubendiamide dissipated faster in red soil (non-sterile followed by sterile) as compared to alluvial (non-sterile soil followed by sterile soil). A wide difference in half-life of red and alluvial soil under sterile and non-sterile conditions indicated that the variation in physicochemical properties of red and alluvial soil as well as the presence of microbes play a great role for degradation of flubendiamide. The results revealed that slower-degrading alluvial soil possessed microbes with degradative capacity. The degradation rate in this soil was significantly reduced by some of its physicochemical characteristics, despite sterile and non-sterile conditions, which was faster in red soil.  相似文献   
30.
Soil pollution by hydrocarbons (aromatic and aliphatic hydrocarbons) is a major environmental issue. Various treatments have been used to remove them from contaminated soils. In our previous studies, the ability of magnetite has been successfully explored to catalyze chemical oxidation for hydrocarbon remediation in batch slurry system. In the present laboratory study, column experiments were performed to evaluate the efficiency of magnetite catalyzed Fenton-like (FL) and activated persulfate (AP) oxidation for hydrocarbon degradation. Flow-through column experiments are intended to provide a better representation of field conditions. Organic extracts isolated from three different soils (an oil-contaminated soil from petrochemical industrial site and two soils polluted by polycyclic aromatic hydrocarbon (PAH) originating from coking plant sites) were spiked on sand. After solvent evaporation, spiked sand was packed in column and was subjected to oxidation using magnetite as catalyst. Oxidant solution was injected at a flow rate of 0.1 mL min?1 under water-saturated conditions. Organic analyses were performed by GC–mass spectrometry, GC–flame ionization detector, and micro-Fourier transform infrared spectroscopy. Significant abatement of both types of hydrocarbons (60–70 %) was achieved after chemical oxidation (FL and AP) of organic extracts. No significant by-products were formed during oxidation experiment, underscoring the complete degradation of hydrocarbons. No selective degradation was observed for FL with almost similar efficiency towards all hydrocarbons. However, AP showed less reactivity towards higher molecular weight PAHs and aromatic oxygenated compounds. Results of this study demonstrated that magnetite-catalyzed chemical oxidation can effectively degrade both aromatic and aliphatic hydrocarbons (enhanced available contaminants) under flow-through conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号