全文获取类型
收费全文 | 20333篇 |
免费 | 181篇 |
国内免费 | 201篇 |
专业分类
安全科学 | 534篇 |
废物处理 | 986篇 |
环保管理 | 2418篇 |
综合类 | 2667篇 |
基础理论 | 5284篇 |
环境理论 | 4篇 |
污染及防治 | 5597篇 |
评价与监测 | 1650篇 |
社会与环境 | 1453篇 |
灾害及防治 | 122篇 |
出版年
2023年 | 92篇 |
2022年 | 215篇 |
2021年 | 217篇 |
2020年 | 139篇 |
2019年 | 177篇 |
2018年 | 326篇 |
2017年 | 320篇 |
2016年 | 524篇 |
2015年 | 362篇 |
2014年 | 573篇 |
2013年 | 1744篇 |
2012年 | 672篇 |
2011年 | 859篇 |
2010年 | 802篇 |
2009年 | 785篇 |
2008年 | 886篇 |
2007年 | 976篇 |
2006年 | 870篇 |
2005年 | 716篇 |
2004年 | 723篇 |
2003年 | 704篇 |
2002年 | 670篇 |
2001年 | 911篇 |
2000年 | 631篇 |
1999年 | 393篇 |
1998年 | 274篇 |
1997年 | 246篇 |
1996年 | 291篇 |
1995年 | 270篇 |
1994年 | 250篇 |
1993年 | 233篇 |
1992年 | 240篇 |
1991年 | 208篇 |
1990年 | 214篇 |
1989年 | 219篇 |
1988年 | 197篇 |
1987年 | 158篇 |
1986年 | 126篇 |
1985年 | 138篇 |
1984年 | 169篇 |
1983年 | 153篇 |
1982年 | 193篇 |
1981年 | 134篇 |
1980年 | 119篇 |
1979年 | 152篇 |
1978年 | 118篇 |
1977年 | 107篇 |
1976年 | 100篇 |
1975年 | 83篇 |
1974年 | 88篇 |
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
741.
Shell fish processing industry is very common in coastal areas. While processing, only the meat is taken, the head and shells are discarded as waste. On an average, the sea food industry produces 80,000 tons of waste per year. The sheer amount of waste makes degradation a slow process causing accumulation of waste over a period of time. A very simple and effective solution to this environmental hazard is the recycling of shell waste to commercially viable products like chitin. Chitosan is the N-acetyl derivative of chitin obtained by N-deacetylation. Chitosan is widely used in food and bioengineering industries for encapsulation of active food ingredients, enzyme immobilization, as a carrier for controlled drug delivery, in agriculture as a plant growth promoter. Chitosan is also a defense elicitor and an antimicrobial agent. Chitosan has interesting properties such as biodegradability, biocompatibility, bioactivity, nontoxicity and polycationic nature. This review presents structural characteristics and physicochemical properties of chitosan. The methods of preparation of chitosan nanoparticles are detailed. Applications of chitosan nanoparticles are discussed. Applications include drug delivery, encapsulation, antimicrobial agent, plant growth-promoting agent and plant protector. 相似文献
742.
This study aimed to investigate the persistence of imidacloprid in soil after application to cotton seeds and to obtain a complete picture on the mass balance of this compound in soil and cotton plants. The study was carried out as a pot culture experiment under laboratory conditions using a Gaucho formulation containing 14C-labeled imidacloprid. Three treatments of cotton seeds were made in sandy loamy soil: live seeds grown in autoclaved soil, dead seeds put in live soil and live seeds grown in live soil. Results showed that total 14C recoveries decreased by time ranging 93.8–96.2, 77.1–88.4 and 53.5–62.4% of the applied radioactivity at 7, 14, and 21 d after application, respectively. The reduction in the extracted 14C from soil coincided with the increase of non-extracted ones. Levels of bound 14C was always less in autoclaved soil than in live ones. Results revealed also that only 1.8–6.8% of the applied 14C was taken up by the plants and fluctuated within the test period. 14C levels were higher in plants grown in autoclaved soil than those in live ones and the radioactivity tended to accumulate on the edges of cotton leaves. Most of the radioactivity in the soil extracts was identified as unchanged 14C-imidacloprid. 相似文献
743.
Plant proteolytic system includes proteases, mainly localized inside the organelles, and the ubiquitin-proteasome pathway in both, the cytoplasm and the nucleus. It was recently demonstrated that under severe Cd stress sunflower (Helianthus annuus L.) proteasome activity is reduced and this results in accumulation of oxidized proteins. In order to test if under other heavy metal stresses sunflower proteolytic system undergoes similar changes, an hydroponic experiment was carried out. Ten days old sunflower plants were transferred to hydroponic culture solutions devoid (control) or containing 100 microM of AlCl(3), CoCl(2), CuCl(2), CrCl(3), HgCl(2), NiCl(2), PbCl(2) or ZnCl(2) and analyzed for protein oxidative damage and proteolytic activities. After 4 days of metal treatment, only Co(2+), Cu(2+), Hg(2+), and Ni(2+) were found to increase carbonyl groups content. Except for Al(3+) and Zn(2+), all metals tested significantly reduced all proteasome activities (chymotrypsin-like, trypsin-like and PGPH) and acid and neutral proteases activities. The effect on basic proteases was more variable. Abundance of 20S protein after metal treatments was similar to that obtained for control samples. Co(2+), Cu(2+), Hg(2+), Ni(2+), Cr(3+), and Pb(2+) induced accumulation of ubiquitin conjugated proteins. It is concluded that heavy metal effects on proteolytic system cannot be generalized; however, impairment of proteasome functionality and decreased proteases activities seem to be a common feature involved in metal toxicity to plants. 相似文献
744.
Implications of urine-to-feces ratio in the thermophilic anaerobic digestion of swine waste. 总被引:1,自引:0,他引:1
Thermophilic anaerobic digestion of swine manure represents a potential waste treatment technology to address environmental concerns, such as odor emissions and removal of pathogenic microorganisms. However, there are concerns relative to the stability of this process when swine manure is the sole substrate. In this study, the potential of biogas production from swine manure as the sole substrate under thermophilic (50 degrees C) conditions was investigated in the laboratory, to determine whether separation of urine and feces as part of the waste collection process would benefit anaerobic digestion. Effluent from a continuously stirred tank reactor was used as the inoculum for batch tests, in which the substrate contained three different concentrations of urine (urine-free, as-excreted urine-to-feces ratio and double the as-excreted urine-to-feces ratio). Inocula were acclimated to these same urine-to-feces ratios to determine methane production. Results show that both urine-free and as-excreted substrates were not inhibitory to anaerobic inocula. Anaerobic microorganisms can be readily acclimated to substrate with double the as-excreted urine concentration, which contained nitrogen concentrations up to 7.20 g/L. Cumulative methane production reached similar levels in the batch tests, regardless of the substrate urine concentration. 相似文献
745.
Laccase mediated biodegradation of 2,4-dichlorophenol using response surface methodology 总被引:3,自引:0,他引:3
The effects of different environmental parameters, i.e., pH, temperature, time and enzyme concentration on the biodegradation of 2,4-dichlorophenol (2,4-DCP) in aqueous phase was evaluated with laccase from Pleurotus sp. using response surface methodology (RSM) in the present investigation. The Box-Behnken design of experiments was used to construct second order response surfaces with the investigated parameters. It was observed that the maximum degradation efficiency of approximately 98% was achieved at pH 6, temperature of 40 degrees C, time 9h and an enzyme concentration of 8IUml(-1). The adequacy of the model was confirmed by the coefficient of multiple regression, R(2) and adjusted R(2) which were adjudged to be 87.9% and 73.6%, respectively indicating a reasonably good model for practical implementation. Despite the fact that many successful attempts have been taken in the past for biodegradation of 2,4-DCP using whole cells, the present study emphasizes the fastest biodegradation of 2,4-DCP, a potent xenobiotic compound. 相似文献
746.
Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridylphosphorothioate) is one of the organophosphate pesticides widely used in agricultural practices throughout world and irreversible inhibitor of cholinesterase in all animal species. Limited efforts have been made to study acute genotoxic effects of chlorpyrifos (CPF) in different tissues of fish using genotoxic biomarkers. Therefore, the present investigation was aimed to study the induction of DNA damage by CPF in freshwater teleost fish Channapunctatus using micronucleus assay (MN assay) and alkaline single-cell gel electrophoresis (comet assay). The value of LC(50) - 96 h of CPF was determined as 811.98 microgl(-1) for C. punctatus, in a semi-static system and on the basis of LC(50) value three acute concentrations viz., 203, 406 and 609 microgl(-1) were determined. The fishes were exposed to the different concentrations of CPF for 96 h and samplings were done at regular intervals for assessment of the MN frequencies and DNA damage. In general, significant effects (P<0.01) from both concentrations and time of exposure were observed in exposed fishes. It was found that the micronucleus induction was highest on 96 h at all concentrations in the peripheral blood. Similar trend was observed for the DNA damage measured in terms of the percentage of tail DNA in the lymphocyte and gill cells. This study explored the combined use of micronucleus assay and comet assay for in vivo laboratory studies using fresh water fish for screening the genotoxic potential of xenobiotics. 相似文献
747.
Separating the effects of organic matter-mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene 总被引:1,自引:0,他引:1
Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron. 相似文献
748.
Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests 总被引:2,自引:0,他引:2
Fenn ME Jovan S Yuan F Geiser L Meixner T Gimeno BS 《Environmental pollution (Barking, Essex : 1987)》2008,155(3):492-511
Empirical critical loads (CL) for N deposition were determined from changes in epiphytic lichen communities, elevated NO(3)(-) leaching in streamwater, and reduced fine root biomass in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at sites with varying N deposition. The CL for lichen community impacts of 3.1kg ha(-1) year(-1) is expected to protect all components of the forest ecosystem from the adverse effects of N deposition. Much of the western Sierra Nevada is above the lichen-based CL, showing significant changes in lichen indicator groups. The empirical N deposition threshold and that simulated by the DayCent model for enhanced NO(3)(-)leaching were 17kg N ha(-1) year(-1). DayCent estimated that elevated NO(3)(-) leaching in the San Bernardino Mountains began in the late 1950s. Critical values for litter C:N (34.1), ponderosa pine foliar N (1.1%), and N concentrations (1.0%) in the lichen Letharia vulpina ((L.) Hue) are indicative of CL exceedance. 相似文献
749.
The study is dealing with the distribution and the origin of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in soils from a priori non-polluted areas. Positive correlations with organic matter and clay content but not with pH have been observed for most of elements analyzed in this study. Correlations of some metals (Cr, Pb and Zn) and radionuclides (238U and 137Cs) observed for analyzed soils could be explained by their common affinity for clay minerals. Enrichment factor (EF) analysis and cluster analysis (CA) highlighted the lithogenic origin of Cr, Cu, Mn, Ni, Pb and Zn and pointed out the primary input of Cd from anthropogenic sources. It also revealed the need for detailed geochemical surveys in the future in order to decrease the uncertainty of discrimination between lithogenic and anthropogenic origin of metals of interest. 相似文献
750.
This paper presents the results of kinetic studies to investigate the effect of FeS film formation on the degradation rate of CCl(4) by 99.99% pure metallic iron. The film was formed by submersing metallic iron grains in an oxygen free HCO(3)(-)/CO(3)(2-) electrolyte solution. When the grains had reached a quasi steady-state value of the corrosion potential, Na(2)S((aq)) was injected. Upon injection, a microm thick poorly crystalline FeS film formed immediately on the iron surface. Over time, the iron became strongly corroded and both the FeS film and the metallic iron grains began to crack leading to exposure of bare metallic iron to the solution. The effect of the surface film on the degradation rate of CCl(4) was investigated following four periods of aging, 1, 10, 30, and 60 days. Relative to the controls, the 1-day sulfide-aged iron showed a substantial decrease in rate of degradation of CCl(4.) However, over time, the rate of degradation increased and surpassed the degradation rate obtained in the controls. It has been proposed that CCl(4) is reduced to HCCl(3) by metallic iron by electron transfer. The FeS film is substantially less conducting than the bulk iron metal or non-stoichiometric magnetite and from the results of this study, greatly decreases the rate of CCl(4) degradation relative to iron that has not been exposed to Na(2)S. However, continued aging of the FeS film results in breakdown and stress-induced cracking of the film, followed by dissolution and cracking of the iron itself. The cracking of the bulk iron is believed to be a consequence of hydrogen embrittlement, which is promoted by sulfide. The increase in CCl(4) degradation rate, as the FeS films age, suggests that the process of hydrogen cracking increases the surface area available for charge transfer. 相似文献