首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   12篇
  国内免费   1篇
安全科学   56篇
废物处理   8篇
环保管理   32篇
综合类   16篇
基础理论   46篇
环境理论   2篇
污染及防治   24篇
评价与监测   13篇
社会与环境   4篇
  2023年   4篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   2篇
  2018年   6篇
  2017年   6篇
  2016年   6篇
  2015年   11篇
  2014年   4篇
  2013年   22篇
  2012年   15篇
  2011年   16篇
  2010年   19篇
  2009年   9篇
  2008年   8篇
  2007年   10篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1991年   6篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
  1964年   1篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
71.
The hepatoprotective potential of a herbal mixture was evaluated against CCl4 induced liver injury in Swiss albino mice. Liv 52, a commercially available polyherbal hepatoprotective drug was evaluated for comparison. The potential toxicity of the above herbal hepatoprotective agents was also compared. It was observed that there was a reduction in the enzyme biomarkers (Aspartate and Alanine Transaminase) of liver injury in the herbal mixture treated groups, which was similar to the reduction initiated by Liv 52. An increase in glutathione was observed in the herbal mixture treated groups and it was assumed that the herbal mixture protects the liver by virtue of its antioxidant nature along with high regeneration initiation potential. From the study it is also concluded that the herbal mixture is safer than Liv 52.  相似文献   
72.
73.
74.
75.
The COVID-19 pandemic is a global crisis emanating both from a virus (SARS-CoV-2) and from the drastic actions to contain it. Here, we reflect on the immediate responses of most world powers amid the pandemic chaos: totalitarian surveillance and nationalist isolation. Drawing on published literature, we consider measures such as wildlife-use bans, lockdowns and travel restrictions, along with their reverberations for people, economies and the planet. Our synthesis highlights significant shortfalls of applying command-and-control tactics in emergencies. For one, heavy-handed bans risk enormous unintended consequences and tend to fail if they lack legitimacy or clash with people’s values. Furthermore, reactive and myopic strategies typically view the pandemic as a stand-alone crisis, rather than unravelling the complex interplay of nature-society interactions through which zoonotic diseases originate. A return to adaptive management approaches that recognise root causes and foster socio-ecological resilience will be essential to improve human and planetary health and mitigate future pandemics.  相似文献   
76.
77.
An LNG pool fire is considered one of the main hazards of LNG, together with LNG vapor dispersion. Suppression methods are designed to reduce the hazard exclusion zones, distance to reach radiant heat of 5 kW/m2, when an LNG pool fire is considered. For LNG vapor dispersion, the hazard exclusion zone is the distance travelled by the LNG vapor to reach a concentration of 2.5% v/v (half of the LNG lower flammability limit).Warming the LNG vapor to reach positive buoyancy faster is one way to suppress LNG vapor dispersion and reduce evaporation rate (thus fire size and its associated radiant heat) and that is the main objective in LNG pool fire suppression. Based on previous research, the use of high expansion foam has been regarded as the primary method in suppressing LNG pool fires. However, in 1980, another method was introduced as an alternative pool fire suppression system, Foamglas®. The research concluded that 90% of the radiant heat was successfully reduced. Currently-called Foamglas® pool fire suppression (Foamglas® PFS) is a passive mitigation system and is deployed after the leak occurs. Foamglas® PFS is non-flammable, and has a density one-third of the density of LNG, thus floats when an LNG pool is formed.This paper describes the study and confirmation of Foamglas®PFS effectiveness in suppressing LNG pool fires. In addition, while Foamglas® PFS is not expected to suppress LNG vapor dispersion, further investigation was conducted to study the effect of Foamglas®PFS on LNG vapor dispersion. An LNG field experiment was conducted at Brayton Fire Field. The experimental development, procedures, results and findings are detailed in this paper.  相似文献   
78.
The prediction of the potential hazards associated to accidental liquefied natural gas (LNG) spills has motivated a number of different studies including experimental and numerical approaches. Most of these studies focus on dispersion predictions, however there is limited information regarding source term of it: liquid spill and vaporization. There is a need of further improvements on the understanding of these phenomena and the quantification of the most important parameters that can affect them.The vaporization of cryogenic liquids is governed by the heat transfer phenomena including conduction, convection and thermal radiation mechanisms. The present work investigates the contribution of each of these heat transfer modes to the vaporization rate of cryogenic liquid nitrogen (LN2) contained in a Dewar flask using well controlled and instrumented laboratory scale experiments. LN2 vaporization rate was measured with individually controllable contributions from convective (generated by an electric fan) and thermal radiative (generated by light bulb) heat transfer in the presence of a baseline conductive heat transfer rate.In both cases of convection and radiation analysis the experimental study showed that they can play a significant role in the vaporization rate of LN2. It was observed that the radiative heat absorbed by the LN2 during the vaporization experiment represents only 50%–65% of the incident radiation that would reach the LN2 pool surface if no vapour was present. Convective heat transfer generated by the fan was shown to have had the most significant contribution to the total heat transfer. As expected, this contribution was significantly higher than the one from bulb radiation. The experimental data also showed that the liquid level in the Dewar play a key role in the resulting amount of convective heat transfer. This could be attributed to the fact that lower liquid level the side walls of the Dewar were high enough to hold a layer of vapour and limit air motion directly above the liquid surface, thus limiting the heat transfer by convection.  相似文献   
79.
Heat transfer fluids tend to form aerosols due to the operating conditions at high pressure when accidental leaking occurs in pipelines or storage vessels, which may cause serious fires and explosions. Due to the physical property complexity of aerosols, it is difficult to define a standard term of “flammability limits” as is possible for gases. The study discussed in this paper primarily focuses on the characterization of ignition conditions and flame development of heat transfer fluid aerosols. The flammable region of a widely-used commercial heat transfer fluid, Paratherm NF (P-NF), was analyzed by electro-spray generation with a laser diffraction particle analysis method. The aerosol ignition behavior depends on the droplet size and concentration of the aerosol. From the adjustment of differently applied electro-spray voltages (7–10 kV) and various liquid feeding rates, a flammable condition distribution was obtained by comparison of droplet size and concentration. An appropriate amount (0.3–1.2 ppm) of smaller droplets (80–110 μm) existing in a given space could result in successful flame formation, while larger droplets (up to 190 μm) have a relatively narrowed range of flammable conditions (0.7–0.9 ppm). It is possible to generate a more useful reference for industry and lab scale consideration when handling liquids. This paper provides initial flammability criteria for analyzing P-NF aerosol fire hazards in terms of droplet size and volumetric concentration, discusses the observation of aerosol combustion processes, and summarizes an ignition delay phenomenon. All of the fundamental study results are to be applied to practical cases with fire hazards analysis, pressurized liquid handling, and mitigation system design once there is a better understanding of aerosols formed by high-flash point materials.  相似文献   
80.
Hydrogen is an indispensable energy carrier for the sustainable development of human society. Nevertheless, its storage, transportation, and in situ generation still face significant challenges. Methanol can be used as an intermediate carrier for hydrogen supplies, providing hydrogen energy through instant methanol conversion. In this study, a sorption-enhanced, chemical-looping, oxidative steam methanol-reforming (SECL-OSRM) process is proposed using CuO–MgO for the on-board hydrogen supply, which could be a promising method for safe and efficient hydrogen production. Aspen Plus software was used for feasibility verification and parameter optimization of the SECL-OSRM process. The effects of CuO/CH3OH, MgO/CH3OH, and H2O/CH3OH mole ratios and of temperature on H2 production rate, H utilization efficiency, CH3OH conversion, CO concentration, and system heat balance are discussed thoroughly. The results indicate that the system can be operated in auto-thermal conditions with high-purity hydrogen (99.50 vol%) and ultra-low-concentration CO (<50 ppm) generation, which confirms the pos-sibility of integrating low-temperature proton-exchange membrane fuel cells (LT-PEFMCs) with the SECL-OSRM process. The simulation results indicate that the CO can be modulated in a lower concentration by reducing the temperature and by improving the H2O/CH3OH and MgO/CH3OH mole ratios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号