首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   1篇
  国内免费   2篇
安全科学   2篇
废物处理   9篇
环保管理   3篇
综合类   6篇
基础理论   23篇
污染及防治   27篇
评价与监测   3篇
社会与环境   3篇
灾害及防治   1篇
  2023年   6篇
  2022年   8篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2016年   5篇
  2015年   2篇
  2014年   4篇
  2013年   7篇
  2012年   3篇
  2011年   12篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1983年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
61.
62.
This article describes a design approach that has been developed for bioremediation of chlorinated volatile organic compound–impacted groundwater that is based upon experience gained during the past 17 years. The projects described in the article generally involve large‐scale enhanced anaerobic dechlorination (EAD) and combined aerobic/anaerobic bioremediation techniques. Our design approach is based on three primary objectives: (1) selecting and distributing the proper additives (including bioaugmentation) within the targeted treatment zone; (2) maintaining a neutral pH (and adding alkalinity when needed); and (3) sustaining the desired conditions for a sufficient period of time for the bioremediation process to be fully completed. This design approach can be applied to both anaerobic and aerobic bioremediation systems. Site‐specific conditions of hydraulic permeability, groundwater velocity, contaminant type and concentrations, and regulatory constraints will dictate the best remedial approach and design parameters for in situ bioremediation at each site. The biggest challenges to implementing anaerobic bioremediation processes are generally the selection and delivery of a suitable electron donor and the proper distribution of the donor throughout the targeted treatment zone. For aerobic bioremediation processes, complete distribution of adequate concentrations of a suitable electron acceptor, typically oxygen or oxygen‐yielding compounds such as hydrogen peroxide, is critical. These design approaches were developed based on understanding the biological processes involved and the mechanics of groundwater flow. They have evolved based on actual applications and results from numerous sites. An EAD treatment system, based on our current design approach, typically uses alcohol as a substrate, employs groundwater recirculation to distribute additives, and has an operational period of two to four years. An aerobic in situ treatment system based on our current design approach typically uses pure oxygen or hydrogen peroxide as an electron acceptor, may involve enhancements to groundwater flow for better distribution, and generally has an operational period of one to four years. These design concepts and specific project examples are presented for 17 sites. © 2012 Wiley Periodicals, Inc.  相似文献   
63.
Environmental Science and Pollution Research - Phosphoric acid production and olive oil production are among the most important economical sectors in Tunisia. However, they generate huge amounts of...  相似文献   
64.
Linear alkylbenzene sulfonate (LAS) is a synthetic anionic surfactant widely present in the environment due to its intensive production and use in the detergency field. Admitting that current procedure of risk assessment has limits in providing realistic risk assessment data and predicting the cumulative effect of the toxicant mixtures, the incorporation of information regarding the mode of action and cell response mechanism seems to be a potential solution to overcome these limits. In this regard, we investigated in this study the LAS cytotoxicity on human intestinal Caco-2 cells, trying to unveil the protein actors implicated in the cell response using proteomics approach in order to give a better understanding of the toxicological effect and allow the identification of appropriate biomarkers reflecting the mode of action associated with LAS. As results, we demonstrated that LAS induces a time- and dose-dependent cytotoxicity in Caco-2 cells accompanied by an induction of oxidative stress followed by an excessive increase of intracellular calcium level. Proteomics approach helped in discovering three informative biomarkers of effect associated with LAS cytotoxic effect, reported for the first time: calreticulin, thioredoxin, and heat shock cognate 71 (HSP7C), confirmed by real-time PCR and western blot analysis. These biomarkers could serve for more reliable future risk assessment studies that consider the toxicants mode of action in order to help in the prediction of potential cumulative effects of environmentally coexisting contaminants.  相似文献   
65.

Background, aim, and scope  

In recent years, anthropogenic chemicals which can disrupt the hormonal systems of both humans and wildlife have been raised to a major cause of concern. The aim of the present work was to determine the bioconcentration factors of the two major alkylphenols (AP) of the Seine Estuary [4-nonylphenol (4 NP) and nonylphenol acetic acid (NP1EC)] and of the synthetic estrogen, estrogen ethinylestradiol (EE2), in Eurytemora affinis after exposure in a continuous flow-through system under environmental realistic conditions. Moreover, the elimination of these compounds in copepods from the Seine Estuary has been investigated by measuring concentrations after 1 week in clean water in comparison to background levels.  相似文献   
66.
67.
We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for both nutrients. To our knowledge, our study is the first of its kind; there is no other study on this issue which would take advantage of detailed data on waste water treatment plants at this extent. We demonstrate that the reduction potential of nutrients is huge in waste water treatment plants. Increasing the abatement in waste water treatment plants can result in 70 % of the Baltic Sea Action Plan nitrogen reduction target and 80 % of the Baltic Sea Action Plan phosphorus reduction target. Another good finding is that the costs of reducing both nutrients are much lower than previously thought. The large reduction of nitrogen would cost 670 million euros and of phosphorus 150 million euros. We show that especially for phosphorus the abatement costs in agriculture would be much higher than in waste water treatment plants.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-013-0435-1) contains supplementary material, which is available to authorized users.  相似文献   
68.
'In connection with the Taparura Project, we studied the distribution of phytoplankton and zooplankton communities in relation to environmental variables at 18 stations sampled during four coastal cruises conducted between October 2009 and July 2010 on the north coast of Sfax (Tunisia, western Mediterranean Sea). The inshore location was largely dominated by diatoms (66 %) represented essentially by members of the genera Navicula, Grammatophora, and Licmophora. Dinophyceae were numerically the second largest group and showed an enhanced species richness. Cyanobacteriae developed in association with an important proliferation of colonial Trichodesmium erythraeum, contributing 39.4 % of total phytoplankton abundances. The results suggest that phytoplankters are generally adapted to specific environmental conditions. Copepods were the most abundant zooplankton group (82 %) of total zooplankton. A total of 21 copepod species were identified in all stations, with an overwhelming abundance of Oithona similis in autumn and summer, Euterpina acutifrons in winter, and Oncaea conifera in spring. The phosphogypsum restoration had been acutely necessary allowing dominant zooplankton species to exploit a wide range of food resources including phytoplankton and thus improving water quality.  相似文献   
69.
Enhanced anaerobic dechlorination is being conducted to remediate a 50‐acre groundwater area impacted with chlorinated volatile organic compounds (CVOCs). The plume, which is over 3,000 feet (ft) long, initially contained tetrachloroethene and breakdown products at concentrations of 2 to 3 milligrams per liter. The site's high groundwater flow velocity (greater than 1,000 ft per year) was incorporated into the design to help with amendment distribution. Bioaugmentation was conducted using a mixed culture containing Dehalococcoides ethenogenes. There is evidence that it has migrated to distances exceeding 600 ft. The major benefit of the high groundwater flow velocity is greater areal coverage by the remediation system, but the downside is the difficulty in delivering sufficient donor to create the required anaerobic conditions. Overall performance has been excellent with total CVOC reductions and conversion to ethene of 98 percent within a 25‐acre area downgradient of the treatment transect that has operated the longest. © 2011 Wiley Periodicals, Inc.  相似文献   
70.

Global pollution by plastics derived from petroleum has fostered the development of carbon–neutral, biodegradable bioplastics synthesized from renewable resources such as modern biomass, yet knowledge on the impact of bioplastics on ecosystems is limited. Here we review the polylactic acid plastic with focus on synthesis, biodegradability tuning, environmental conversion to microplastics, and impact on microbes, algae, phytoplankton, zooplankton, annelids, mollusk and fish. Polylactic acid is a low weight semi-crystalline bioplastic used in agriculture, medicine, packaging and textile. Polylactic acid is one of the most widely used biopolymers, accounting for 33% of all bioplastics produced in 2021. Although biodegradable in vivo, polylactic acid is not completely degradable under natural environmental conditions, notably under aquatic conditions. Polylactic acid disintegrates into microplastics faster than petroleum-based plastics and may pose severe threats to the exposed biota.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号