首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33212篇
  免费   343篇
  国内免费   259篇
安全科学   951篇
废物处理   1230篇
环保管理   4567篇
综合类   5067篇
基础理论   10004篇
环境理论   24篇
污染及防治   8357篇
评价与监测   1970篇
社会与环境   1449篇
灾害及防治   195篇
  2022年   192篇
  2021年   194篇
  2019年   226篇
  2018年   514篇
  2017年   511篇
  2016年   766篇
  2015年   550篇
  2014年   713篇
  2013年   2208篇
  2012年   1252篇
  2011年   1493篇
  2010年   1092篇
  2009年   1094篇
  2008年   1337篇
  2007年   1438篇
  2006年   1274篇
  2005年   1495篇
  2004年   1644篇
  2003年   1442篇
  2002年   1000篇
  2001年   1279篇
  2000年   886篇
  1999年   589篇
  1998年   442篇
  1997年   455篇
  1996年   459篇
  1995年   505篇
  1994年   456篇
  1993年   404篇
  1992年   425篇
  1991年   388篇
  1990年   385篇
  1989年   420篇
  1988年   351篇
  1987年   306篇
  1986年   278篇
  1985年   309篇
  1984年   294篇
  1983年   324篇
  1982年   328篇
  1981年   275篇
  1980年   244篇
  1979年   272篇
  1978年   234篇
  1977年   197篇
  1976年   201篇
  1975年   195篇
  1974年   175篇
  1973年   172篇
  1972年   201篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
162.
In August 2000 high concentrations of the dominant herbivorous copepod Calanus hyperboreus were detected in the Arctic Fram Strait, west of Spitsbergen, 1 m above the seafloor at 2,290 m water depth. Individuals from that layer were sampled by a hyper-benthic net attached to the frame of an epi-benthic sledge. For comparison, the vertical distribution of C. hyperboreus in the water column was studied simultaneously by a multiple opening/closing net haul from 2,250 m depth to the surface. Maximum abundance was found close to the surface with 6.6 and 10.0 ind. m?3 at 0–50 m and 50–100 m depth, respectively. However, the major fraction of the population (>40%) occurred between 1,000 and 1,500 m depth. In the deepest layer (2,000–2,250 m) abundance measured 2.2 ind. m?3 and was twice as high as between 100 and 1,000 m depth. In comparison to individuals from surface waters, copepods from the hyper-benthic layer were torpid and did not react to mechanical stimuli. Stage CV copepodids and females from the deep sample contained 4–10% less lipid and showed significantly reduced respiration rates of 0.24 and 0.26 ml O2 h?1 g?1 dry mass (DM) as compared to surface samples (0.49 and 0.43 ml O2 h?1 g?1 DM). All these observations indicate that the hyper-benthic part of the population had already started a dormant overwintering phase at great depth. Based on the lipid deposits and energy demands, the potential maximum duration of the non-feeding dormant phase was estimated at 76–110 days for females and at 98–137 days for CV copepodids, depending on what indispensable minimum lipid content was assumed. In any case, the estimated times could not meet the necessary requirements for a starvation period of >6 months until the next phytoplankton bloom in the following spring. The ecological implications of these results are discussed with respect to the life cycle and eco-physiological adaptations of C. hyperboreus to its high-Arctic habitat.  相似文献   
163.
Methods are presented to extract intra-seasonal meteorological patterns at three scales to explain 24-h fine particulate matter (PM2.5) pollution events: evolving large-scale meteorological scenarios, synoptic regimes driving diurnal variability near the surface, and localized meteorological triggers. The methods were applied to understand how winter weather conditions impacted PM2.5 around the San Francisco Bay Area (SFBA). Analyzing data across 12 winters (November–March) ensured robust characterization of the SFBA conditions. SFBA 24-h PM2.5 exceedances (35 μg m?3) required several simultaneous characteristics: a ridge of aloft high pressure moving over SFBA, providing weak surface pressure gradients over Central California; persistent easterly flows through SFBA extending vertically to around the 925-hPa pressure level; orographically channeled winds resulting from stability; enhanced nocturnal cooling under clear-sky conditions providing for enhanced drainage flows off the Central California slopes; and at least two consecutive days of these conditions.  相似文献   
164.
The development of process-based models to estimate ammonia emissions from animal feeding operations (AFOSs) is sought to replace costly and time-consuming direct measurements. Critical to process-based model development is conducting sensitivity analysis to determine the input parameters and their interactions that contribute most to the variance of the model output. Global and relative sensitivity analyses were applied to a process-based model for predicting ammonia emissions from the surface of anaerobic lagoons for treating and storing manure. The objectives were to compare global sensitivity analysis (GSA) to relative (local) sensitivity analysis (RSA) on a process-based model for ammonia emissions. Based on the first-order coefficient, both GSA and RSA showed the model input parameters in order of importance in process model for ammonia emissions from lagoon surfaces were: (i) pH, (ii) lagoon liquid temperature, (iii) wind speed above the lagoon surface, and (iv) the concentration of ammoniacal nitrogen in the lagoon. The GSA revealed that interactions between model parameters accounted for over two-thirds of the model variance, a result that cannot be achieved using traditional RSA. Also, the GSA showed that parameter interactions involving liquid pH had more impact on the model output variance than the single parameters: (i) temperature, (ii) wind speed, or (iii) total ammoniacal nitrogen. This study demonstrates that GSA provides a more complete analysis of model input parameters and their interactions on the model output compared to RSA. A comprehensive tutorial regarding the application of GSA to a process model is presented.  相似文献   
165.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F ) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.  相似文献   
166.
The designation of no‐take marine reserves involves social and economic concerns due to the resulting displacement of fishing effort, when fishing rights are removed from those who traditionally fished within an area. Displacement can influence the functioning of the fishery and success of the reserve, yet levels of displacement are seldom quantified after reserve implementation and very rarely before that. We devised a simple analytical framework based on set theory to facilitate reserve placement. Implementation of the framework requires maps of fishing grounds, fishing effort, or catch per unit effort for at least 2 years. The framework quantifies the level of conflict that a reserve designation might cause in the fishing sector due to displacement and the opportunities to offset the conflict through fisher spatial mobility (i.e., ability of fishers to fish elsewhere). We also considered how the outputs of the framework can be used to identify targeted management interventions for each fishery. We applied the method in Honduras, where the largest marine protected area in Central America is being placed, for which spatial data on fishing effort were available for 6 fisheries over 3 years. The proposed closure had a greater negative impact on the shrimp and lobster scuba fisheries, which concentrated respectively 28% and 18% of their effort inside the reserve. These fisheries could not accommodate the displacement within existing fishing grounds. Both would be forced to stretch into new fishing grounds, which are available but are of unknown quality. These stakeholders will likely require compensation to offset costly exploratory fishing or to travel to fishing grounds farther away from port.  相似文献   
167.
Habitat linkages can help maintain connectivity of animal populations in developed landscapes. However, the lack of empirical data on the width of lateral movements (i.e., the zigzagging of individuals as they move from one point to point another) makes determining the width of such linkages challenging. We used radiotracking data from wood frogs (Lithobates sylvaticus) and spotted salamanders (Ambystoma maculatum) in a managed forest in Maine (U.S.A.) to characterize movement patterns of populations and thus inform planning for the width of wildlife corridors. For each individual, we calculated the polar coordinates of all locations, estimated the vector sum of the polar coordinates, and measured the distance from each location to the vector sum. By fitting a Gaussian distribution over a histogram of these distances, we created a population‐level probability density function and estimated the 50th and 95th percentiles to determine the width of lateral movement as individuals progressed from the pond to upland habitat. For spotted salamanders 50% of lateral movements were ≤13 m wide and 95% of movements were ≤39 m wide. For wood frogs, 50% of lateral movements were ≤17 m wide and 95% of movements were ≤ 51 m wide. For both species, those individuals that traveled the farthest from the pond also displayed the greatest lateral movement. Our results serve as a foundation for spatially explicit conservation planning for pond‐breeding amphibians in areas undergoing development. Our technique can also be applied to movement data from other taxa to aid in designing habitat linkages. Caracterización de la Amplitud de Movimiento de Anfibios durante la Migración Pos‐Reproducción  相似文献   
168.
Electrocution on overhead power structures negatively affects avian populations in diverse ecosystems worldwide, contributes to the endangerment of raptor populations in Europe and Africa, and is a major driver of legal action against electric utilities in North America. We investigated factors associated with avian electrocutions so poles that are likely to electrocute a bird can be identified and retrofitted prior to causing avian mortality. We used historical data from southern California to identify patterns of avian electrocution by voltage, month, and year to identify species most often killed by electrocution in our study area and to develop a predictive model that compared poles where an avian electrocution was known to have occurred (electrocution poles) with poles where no known electrocution occurred (comparison poles). We chose variables that could be quantified by personnel with little training in ornithology or electric systems. Electrocutions were more common at distribution voltages (≤33 kV) and during breeding seasons and were more commonly reported after a retrofitting program began. Red‐tailed Hawks (Buteo jamaicensis) (n = 265) and American Crows (Corvus brachyrhynchos) (n = 258) were the most commonly electrocuted species. In the predictive model, 4 of 14 candidate variables were required to distinguish electrocution poles from comparison poles: number of jumpers (short wires connecting energized equipment), number of primary conductors, presence of grounding, and presence of unforested unpaved areas as the dominant nearby land cover. When tested against a sample of poles not used to build the model, our model distributed poles relatively normally across electrocution‐risk values and identified the average risk as higher for electrocution poles relative to comparison poles. Our model can be used to reduce avian electrocutions through proactive identification and targeting of high‐risk poles for retrofitting. Modelo Predictivo del Riesgo de Electrocución de Aves en Líneas Eléctricas Elevadas  相似文献   
169.
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150–200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat‐based effective distance metrics, least‐cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species‐specific analyses parallels the previous shift from general minimum‐viable‐population thresholds to detailed viability modeling in endangered species recovery planning. Desarrollo de Criterios de Conectividad Metapoblacional a Partir de Datos Genéticos y de Hábitat para Recuperar al Lobo Mexicano en Peligro de Extinción  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号