首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31242篇
  免费   368篇
  国内免费   465篇
安全科学   1015篇
废物处理   1470篇
环保管理   3928篇
综合类   5134篇
基础理论   8206篇
环境理论   21篇
污染及防治   8167篇
评价与监测   2142篇
社会与环境   1807篇
灾害及防治   185篇
  2023年   148篇
  2022年   333篇
  2021年   328篇
  2020年   254篇
  2019年   295篇
  2018年   499篇
  2017年   503篇
  2016年   779篇
  2015年   589篇
  2014年   909篇
  2013年   2475篇
  2012年   1098篇
  2011年   1499篇
  2010年   1212篇
  2009年   1223篇
  2008年   1488篇
  2007年   1540篇
  2006年   1310篇
  2005年   1127篇
  2004年   1019篇
  2003年   1116篇
  2002年   978篇
  2001年   1251篇
  2000年   871篇
  1999年   537篇
  1998年   360篇
  1997年   371篇
  1996年   374篇
  1995年   442篇
  1994年   455篇
  1993年   363篇
  1992年   384篇
  1991年   358篇
  1990年   392篇
  1989年   347篇
  1988年   304篇
  1987年   284篇
  1986年   225篇
  1985年   252篇
  1984年   273篇
  1983年   259篇
  1982年   246篇
  1981年   226篇
  1980年   176篇
  1979年   197篇
  1978年   182篇
  1975年   141篇
  1974年   119篇
  1972年   131篇
  1971年   131篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
191.
This paper describes the results of the first experimental stage of Phase IV of a Joint Industry Project (JIP) on liquid jets and two-phase droplet dispersion. The objective of this stage of the JIP was to generate experimental rainout data for non-flashing water and xylene experiments. See the overview companion paper I for a wider overview of the problem, model implementation and associated model validation.A range of orifice sizes (2.5 and 5 mm) and stagnation pressures (4–16 barg) were applied. Measurements included flow rate, initial droplet size, plume concentrations/temperatures for a range of downstream locations, and distributed rainout.Instead of the Phase Doppler Anemometry method used for droplet size measurements earlier in the JIP, a photographic technique was applied in an attempt to include measurement of the larger (non-spherical) droplets. This enabled a more accurate evaluation of the initial droplet size distribution and a much clearer understanding of the droplet morphology. The results showed that the droplet behaviour in the jet is more complex than had been anticipated with the mass distribution dominated by a very small number of large non-spherical droplets. Consequently a large number of spray images were required to evaluate an accurate size distribution.Distributed rainout was measured by weighing the amount of rainout in trays positioned along the jet direction. The rainout results showed a good degree of repeatability and internal consistency. They indicated that an increasing proportion of the released material did not rainout for increasing pressure. Rainout distance also increased with increasing pressure. Evaporation of the liquid was confirmed by temperature measurements, which showed the effect of evaporative cooling.Xylene concentration measurements (up to 1%) were carried out using a direct reading photoionization detector calibrated for xylene (measuring vapour only). For a limited dataset, the accuracy of these measurements was estimated by means of comparison against an alternative more time-consuming concentration method (xylene absorption onto a charcoal filter; measuring both vapour and liquid). The concentration measurements displayed several consistent qualitative features. For example, at a given downstream distance, the peak concentration increases with increasing pressure and nozzle diameter and the vertical height at which the peak is achieved increases. The cross-stream profiles displayed a consistent tendency to increased concentration at the edge of the jet, and the reason for this has not been established.Finally recommendations are provided for potential future work.  相似文献   
192.
An approach to reduce the probability of producing a domino effect in process industry is developed in this work. It is assumed that optimal layouts should include appropriate analysis to reduce risk during the process design stage. The model developed for this approach combines the estimation of probability of damage due to overpressure, proposed by Mingguang and Juncheng (2008), and escalation threshold values defined by Cozzani, Gubinelli, and Salzano (2006). These equations are combined with other typical layout constraints as well as bounding the probability constraint, which has resulted in a highly non-linear MINLP problem. Solving a case study used by other authors provides evidence for reliability of the developed approach. In this way, layouts are designed to reduce the escalation probability yielding safe distributions.  相似文献   
193.
Concerns over public safety and security of a potential liquefied natural gas (LNG) spill have promoted the need for continued improvement of safety measures for LNG facilities. The mitigation techniques have been recognized as one of the areas that require further investigation to determine the public safety impact of an LNG spill. Forced mitigation of LNG vapors using a water curtain system has been proven to be effective in reducing the vapor concentration by enhancing the dispersion. Currently, no engineering criteria for designing an effective water curtain system are available, mainly due to a lack of understanding of the complex droplet–vapor interaction. This work applies computational fluid dynamics (CFD) modeling to evaluate various key design parameters involved in the LNG forced mitigation using an upwards-oriented full-cone water spray. An LNG forced dispersion model based on a Eulerian–Lagrangian approach was applied to solve the physical interactions of the droplet–vapor system by taking into account the various effects of the droplets (discrete phase) on the air–vapor mixture (continuous phase). The effects of different droplet sizes, droplet temperatures, air entrainment rates, and installation configurations of water spray applications on LNG vapor behavior are investigated. Finally, the potential of applying CFD modeling in providing guidance for setting up the design criteria for an effective forced mitigation system as an integrated safety element for LNG facilities is discussed.  相似文献   
194.
To quickly and accurately quantify the material release in process units, gas detectors may be placed according to the results of gas dispersion modeling. DNV's PHAST software is one of the most useful and reliable tools for material dispersion modeling. In this software, fluid dispersion is modeled based on the process conditions, the weather conditions and the specifications of the material release point. However, varying weather conditions throughout the year and the exact determination of the release point on the plot plan and the release elevation are problematic; these issues cause the results to be non-exact and non-integrated. Choosing the most appropriate conditions is challenging. In this paper, a scheme was provided to select the most appropriate conditions for gas dispersion modeling. This scheme approaches modeling based on the worst-case scenario (the situation in which the dispersed gas reaches the detector later in comparison to the other cases). Therefore, different weather conditions, release elevations and release points on the plot plan were modeled for an absorber tower of the Gonbadli Dehydration Unit of the Khangiran Refinery. The worst case of each release condition was then chosen. Finally, gas detectors were placed using the gas dispersion modeling results based on the worst-case scenario.  相似文献   
195.
In this study, an Integrated Simulation-Data Envelopment Analysis (DEA) approach is presented for optimum facility layout of maintenance workshop in a gas transmission unit. The process of repair of incoming parts includes various operations on different facilities. The layout problem in this system involves determining the optimum location of all maintenance shop facilities. Layout optimization plays a crucial role in this type of problems in terms of increasing the efficiency of main production line. Standard types of layouts including U, S, W, Z and straight lines are considered. First, the maintenance workshop is modeled with discrete-event-simulation. Time in system, average waiting time, average machine utilization, average availability of facilities, average queue length of facilities (AL) and average operator utilization are obtained from simulation as key performance indicators (KPIs) of DEA. Also, safety index and number of operators are considered as other KPIs. Finally, a unified non-radial Data Envelopment Analysis (DEA) is presented with respect to the stated KPIs to rank all layouts alternatives and to identify the best configuration. Principle Component Analysis (PCA) is used to validate and verify the results. Previous studies do not consider safety factor in layout design problems. This is the first study that presents an integrated approach for identification of optimum layout in a maintenance workshop of gas transmission unit by incorporating safety and conventional factors.  相似文献   
196.
197.
Plastic was tested to select biofilm support media that would enhance nitrification in the presence of heterotrophs. Eight different types (acrylonitrile butadiene styrene, nylon, polycarbonate, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinyl chloride and tufnol) were immersed in an aerobic fed-batch reactor receiving domestic settled wastewater. Nitrification rates did not correlate with biomass concentrations, nor surface roughness of the plastics as measured by atomic force microscopy (AFM). The maximum nitrification rate of 1.5 g/m2 d?1 was obtained from biofilms growing on PTFE which had the lowest surface adhesion force (8 nN). Nitrification rates for the biofilms were inversely correlated with the attraction forces as measured by AFM.  相似文献   
198.
Experimental and theoretical studies were conducted to investigate the pyrophoricity and water-reactivity risks associated with employing sodium alanate (NaAlH4) complex metal hydride in on-board vehicular hydrogen (H2) storage systems. The ignition and explosivity of NaAlH4 upon exposure to oxidizers in air or water were attributed to the spontaneous formation of stable hydroperoxyl intermediates on the NaAlH4 surface and/or H2 production, as well as the large driving force for NaAlH4 conversion to favorable hydroxide products predicted by atomic and thermodynamic modeling. The major products from NaAlH4 exposure to air: NaAl(OH)4, gibbsite and bayerite Al(OH)3, and Na2CO3 observed by XRD, were identified to be formed by surface-controlled reactions. The reactivity risks were significantly minimized, without compromising de-/re-hydrogenation cyclability, by compacting NaAlH4 powder into wafers to reduce the available surface area. These core findings are of significance to risk mitigation and H2 safety code and standard development for the safe use of NaAlH4 for on-board H2 storage in light-duty vehicles.  相似文献   
199.
It is important to screen strains that can decompose polycyclic aromatic hydrocarbons (PAHs) completely and rapidly with good adaptability for bioremediation in a local area. A bacterial strain JM2, which uses phenanthrene as its sole carbon source, was isolated from the active sewage sludge from a chemical plant in Jilin, China and identified as Pseudomonas based on 16S rDNA gene sequence analysis. Although the optimal growth conditions were determined to be pH 6.0 and 37℃, JM2 showed a broad pH and temperature profile. At pH 4.5 and 9.3, JM2 could degrade more than 40% of fluorene and phenanthrene (50 mg/L each) within 4 days. In addition, when the temperature was as low as 4℃, JM2 could degrade up to 24% fluorene and 12% phenanthrene. This showed the potential for JM2 to be applied in bioremediation over winter or in cold regions. Moreover, a nutrient augmentation study showed that adding formate into media could promote PAH degradation, while the supplement of salicylate had an inhibitive effect. Furthermore, in a metabolic pathway study, salicylate, phthalic acid, and 9-fluorenone were detected during the degradation of fluorene or phenanthrene. In conclusion, Pseudomonas sp. JM2 is a high performance strain in the degradation of fluorene and phenanthrene under extreme pH and temperature conditions. It might be useful in the bioremediation of PAHs.  相似文献   
200.
We used aerated systems to assess the influence of the bacterioplankton community on cyanobacterial blooms in algae/post-bloom of Lake Taihu, China. Bacterioplankton community diversity was evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE) fingerprinting. Chemical analysis and nitrogen dynamic changes illustrated that NH4+-N was nitrified to NO2-N and NO3-N by bacterioplankton. Finally, NH4+-N was exhausted and NO3-N was denitrified to NO2-N, while the accumulation of NO2-N indicated that bacterioplankton with completely aerobic denitrification ability were lacking in the water samples collected from Lake Taihu. We suggested that adding completely aerobic denitrification bacteria(to denitrify NO2-N to N2)would improve the water quality. PCR-DGGE and sequencing results showed that more than 1/3 of the bacterial species were associated with the removal of nitrogen, and Acidovorax temperans was the dominant one. PCR-DGGE, variation of nitrogen, removal efciencies of chlorophyll-a and canonical correspondence analysis indicated that the bacterioplankton significantly influenced the physiological and biochemical changes of cyanobacteria. Additionally, the unweighted pair-group method with arithmetic means revealed there was no obvious harm to the microecosystem from aeration. The present study demonstrated that bacterioplankton can play crucial roles in aerated ecosystems, which could control the impact of cyanobacterial blooms in eutrophicated fresh water systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号