首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14794篇
  免费   535篇
  国内免费   5768篇
安全科学   918篇
废物处理   942篇
环保管理   1172篇
综合类   8132篇
基础理论   2611篇
环境理论   2篇
污染及防治   5660篇
评价与监测   547篇
社会与环境   497篇
灾害及防治   616篇
  2024年   3篇
  2023年   225篇
  2022年   681篇
  2021年   546篇
  2020年   409篇
  2019年   429篇
  2018年   535篇
  2017年   656篇
  2016年   811篇
  2015年   1009篇
  2014年   1160篇
  2013年   1616篇
  2012年   1263篇
  2011年   1345篇
  2010年   963篇
  2009年   952篇
  2008年   1012篇
  2007年   923篇
  2006年   825篇
  2005年   603篇
  2004年   421篇
  2003年   549篇
  2002年   483篇
  2001年   408篇
  2000年   432篇
  1999年   473篇
  1998年   422篇
  1997年   352篇
  1996年   333篇
  1995年   284篇
  1994年   235篇
  1993年   188篇
  1992年   151篇
  1991年   88篇
  1990年   69篇
  1989年   54篇
  1988年   47篇
  1987年   30篇
  1986年   25篇
  1985年   13篇
  1984年   15篇
  1983年   18篇
  1982年   11篇
  1981年   12篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
691.
反硝化除磷菌驯化富集方式的探讨   总被引:3,自引:0,他引:3  
以SBR反应器分别采用一段式和二段式培养方法对反硝化除磷菌进行了驯化富集.结果表明,一段式和二段式培养方法驯化完成后的活性污泥沉降性能均较好,污泥体积指数(SVI)分别约为60、50 mL/g,反硝化除磷菌占聚磷菌的比例达到了77%和71%.两种培养方法下反硝化除磷菌PO3-4-P去除率和脱氮率分别达到了97%和95%以上,缺氧结束时水中PO3-4-P质量浓度小于1 mg/L.驯化完成后污泥的含磷率最高达到了3.7%(质量分数).因此,采用一段式或二段式驯化方法均能实现反硝化除磷菌的有效富集.  相似文献   
692.
CO2捕集回收技术研究   总被引:3,自引:0,他引:3  
主要介绍了常用的胺化合物吸收法、钙基吸收剂法、金属氧化物法等CO2捕集回收技术的最新研究进展及存在的问题,综合对比了各种方法的优缺点:胺化合物吸收法吸收速率快,但再生能耗较高,因此开发"高效低耗"的复合吸收剂成为研究的重点;钙基吸收剂法在高温环境下对CO2的吸收有较好的效果,但吸收剂的碳酸化转化率及热稳定性是有待解决的关键问题;金属氧化物法具有高的CO2吸收效率,但成本较高.在此基础上,探索了CO2捕集回收技术改进工艺,提出改善吸收剂性能、开发高效低耗的CO2选择性吸收剂将成为今后CO2捕集回收技术的研究方向.  相似文献   
693.
膜基活化溶液中活化剂在回收温室气体CO2过程中的作用   总被引:1,自引:0,他引:1  
将AMP和PZ作为活化剂添加于MDEA溶液中,形成活化溶液,研究了膜基活化溶液回收温室气体CO2性能,着重考察活化剂的活化作用和对膜接触器传质加强的影响,提出一个活化机理来解释活化现象,建立了阻力层方程模型, 并模拟膜基活化溶液回收CO2的传质过程。结果表明,活化剂对膜接触器传质的加强起到重要作用,具有双氨基环状结构的PZ对传质的加强作用高于具有空间位阻结构的AMP;活化溶液的CO2回收率和传质通量明显高于未活化的MDEA溶液,活化性能PZ>AMP;活化剂的活化效应与分子结构有关;流体力学的改变对传质的影响有限,活化剂的反应动力学对传质的加强起主导作用;阻力层方程模型能较好地模拟膜基活化溶液回收CO2传质过程,传质通量和总传质系数的模型值与实验值符合较好。  相似文献   
694.
A passive air sampler was developed for collecting polycyclic aromatic hydrocarbons (PAHs) in air mass from various directions. The airflow velocity within the sampler was assessed for its responses to ambient wind speed and direction. The sampler was examined for trapped particles, evaluated quantitatively for influence of airflow velocity and temperature on PAH uptake, examined for PAH uptake kinetics, calibrated against active sampling, and finally tested in the field. The airflow volume passing the sampler was linearly proportional to ambient wind speed and sensitive to wind direction. The uptake rate for an individual PAH was a function of airflow velocity, temperature and the octanol-air partitioning coefficient of the PAH. For all PAHs with more than two rings, the passive sampler operated in a linear uptake phase for three weeks. Different PAH concentrations were obtained in air masses from different directions in the field test.  相似文献   
695.
A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition.  相似文献   
696.
Passive air sampling (PAS) was employed to study the occurrence of gaseous and particle-bound PAHs in the North Chinese Plain. The averaged concentrations of gaseous and particle-bound PAHs were 485 ± 209 ng/m3 and 267 ± 161 ng/m3, respectively. The PAHs concentrations at urban sites were generally higher than those at rural ones with ratios <1.5 in spring, summer and fall, but differences between them were not significant for the wintertime and annually averaged concentrations. This urban-rural distribution pattern was related to the PAHs emission sources. PAHs spatial variation can be partially (49%) explained by emission with a simple linear regression method. Both the gaseous and particle-bound PAHs were highest in winter and lowest in summer, with winter/summer ratios of 1.8 and 8, respectively. Emission strength was the most important factor for the seasonality.  相似文献   
697.
The sizes and concentrations of 21 atmospheric polycyclic aromatic hydrocarbons (PAHs) were measured at Jhu-Shan (a rural site) and Sin-Gang (a town site) in central Taiwan in October and December 2005. Air samples were collected using semi-volatile sampling trains (PS-1 sampler) over 16 days for rice-straw burning and nonburning periods. These samples were then analyzed using a gas chromatograph with a flame-ionization detector (GC/FID). Particle-size distributions in the particulate phase show a bimode, peaking at 0.32-0.56 microm and 3.2-5.6 microm at the two sites during the nonburning period. During the burning period, peaks also appeared at 0.32-0.56 microm and 3.2-5.6 microm at Jhu-Shan, with the accumulation mode (particle size between 0.1 and 3.2 microm) accounting for approximately 74.1% of total particle mass. The peaks at 0.18-0.32 microm and 1.8-3.2 microm at Shin-Gang had an accumulation mode accounting for approximately 70.1% of total particle mass. The mass median diameter (MMD) of 3.99-4.35 microm in the particulate phase suggested that rice-straw burning generated increased numbers of coarse particles. The concentrations of total PAHs (sum of 21 gases + particles) at the Jhu-Shan site (Sin-Gang site) were 522.9 +/- 111.4 ng/ml (572.0 +/- 91.0 ng/ml) and 330.1 +/- 17.0 ng/ml (or 427.5 +/- 108.0 ng/ml) during burning and nonburning periods, respectively, accounting for a roughly 58% (or 34%) increase in the concentrations of total PAHs due to rice-straw burning. On average, low-weight PAHs (about 87.0%) represent the largest proportion of total PAHs, followed by medium-weight PAHs (7.1%), and high-weight PAHs (5.9%). Combustion-related PAHs during burning periods were 1.54-2.57 times higher than those during nonburning periods. The results of principal component analysis (PCA)/absolute principal component scores (APCS) suggest that the primary pollution sources at the two sites are similar and include vehicle exhaust, coal/wood combustion, incense burning, and incineration emissions. Open burning of rice straw was estimated to contribute approximately 5.0-33.5% to the total atmospheric PAHs at the two sites.  相似文献   
698.
Seasonal effect on N2O formation in nitrification in constructed wetlands   总被引:1,自引:0,他引:1  
Inamori R  Wang Y  Yamamoto T  Zhang J  Kong H  Xu K  Inamori Y 《Chemosphere》2008,73(7):1071-1077
Constructed wetlands are considered to be important sources of nitrous oxide (N(2)O). In order to investigate the contribution of nitrification in N(2)O formation, some environmental factors, plant species and ammonia-oxidizing bacteria (AOB) in active layers have been compared. Vegetation cells indicated remarkable effect of seasons and different plant species on N(2)O emission and AOB amount. Nitrous oxide data showed large temporal and spatial fluctuations ranging 0-52.8 mg N(2)O m(-2)d(-1). Higher AOB amount and N(2)O flux rate were observed in the Zizania latifolia cell, reflecting high potential of global warming. Roles of plants as ecosystem engineers are summarized with rhizosphere oxygen release and organic matter transportation to affect nitrogen transformation. The Phragmites australis cell contributed to keeping high T-N removal performance and lower N(2)O emission. The distribution of AOB also supported this result. Statistical analysis showed several environmental parameters affecting the strength of observed greenhouse gases emission, such as water temperature, water level, TOC, plant species and plant cover.  相似文献   
699.
700.
The fate of herbicides trifluralin, pendimethalin, alachlor and metolachlor in paddy field soils amended with plant materials was investigated. The plant materials were purple sesbania, vegetable soybean and rice straw. The investigation was performed at two temperatures (25 and 40 degrees C) and two soil water moistures (60 and 90% water-holding capacity). The results showed linear and Freudlich equations described the adsorption of amide compound to soil. Adsorption coefficient (K(d)) fit to linear equation were in general greater in plant material-amended soils than in non-amended soil, especially in soil amending with rice straw. Increasing temperature and soil water moisture content shortened the half-lives of compounds in various treated soils. The movement of compounds in the soil columns showed the maximum distribution of aniline type compound, trifluralin and pendimethalin, appeared at the upper top of 0 to 5 and 0 to 10 cm of soil column, respectively, and of anilide type, alachlor and metolachlor, were distributed at 0 to 25 cm of the soil column. The mobility of chemicals in the different treated soils was simulated by the behavior assessment model (BAM). There was no significant difference among different plant material incubated soils on dissipation and mobility of compounds in soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号