首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30762篇
  免费   322篇
  国内免费   225篇
安全科学   806篇
废物处理   1285篇
环保管理   4206篇
综合类   5137篇
基础理论   8407篇
环境理论   17篇
污染及防治   7844篇
评价与监测   1989篇
社会与环境   1407篇
灾害及防治   211篇
  2022年   277篇
  2021年   274篇
  2019年   229篇
  2018年   406篇
  2017年   397篇
  2016年   626篇
  2015年   482篇
  2014年   706篇
  2013年   2398篇
  2012年   905篇
  2011年   1256篇
  2010年   1024篇
  2009年   1081篇
  2008年   1267篇
  2007年   1292篇
  2006年   1156篇
  2005年   1010篇
  2004年   938篇
  2003年   934篇
  2002年   893篇
  2001年   1129篇
  2000年   844篇
  1999年   498篇
  1998年   367篇
  1997年   407篇
  1996年   419篇
  1995年   487篇
  1994年   439篇
  1993年   410篇
  1992年   384篇
  1991年   423篇
  1990年   413篇
  1989年   390篇
  1988年   340篇
  1987年   336篇
  1986年   311篇
  1985年   275篇
  1984年   339篇
  1983年   300篇
  1982年   359篇
  1981年   303篇
  1980年   259篇
  1979年   280篇
  1978年   248篇
  1977年   218篇
  1976年   194篇
  1975年   207篇
  1974年   207篇
  1973年   217篇
  1972年   201篇
排序方式: 共有10000条查询结果,搜索用时 97 毫秒
991.
Biostimulation has been used at various contaminated sites to promote the reductive dechlorination of trichloroethylene (TCE), but the addition of carbon and energy donor also stimulates bacteria that use Fe(III) as the terminal electron acceptor (TEA) in potential competition with dechlorination processes. Microcosm studies were conducted to determine the influence of various carbon donors on the extent of reductive dissolution of aquifer solids containing Fe(III) and arsenic. Glucose, a fermentable and respirable carbon donor, led to the production of 1500 mg Fe(II) kg(-1), or 24% of the total Fe in the aquifer sediment being reduced to Fe(II), whereas the same concentration of carbon as acetate resulted in only 300 mg Fe(II) kg(-1) being produced. The biogenic Fe(II) produced with acetate was exclusively associated with the solid phase whereas with fermentable carbon donors as whey and glucose, 22 and 54% of the Fe(II) was in solution. With fermentation, some of the metabolites appear to be electron shuttling chemicals and chelating agents that facilitate the reductive dissolution of even crystalline Fe(III) oxides. Without the presence of electron shuttling chemicals, only surficial Fe in direct contact with the bacteria was bioavailable, as illustrated when acetate was used. Regardless of carbon donor type and concentration, As concentrations in the water exceeded drinking water standards. The As dissolution appears to have been the result of the direct use of As as an electron acceptor by dissimilatory arsenic reducing bacteria. Our findings indicate that selection of the carbon and energy donor for biostimulation for remediation of chlorinated solvent impacted aquifers may greatly influence the extent of the reductive dissolution of iron minerals in direct competition with dechlorination processes. Biostimulation may also result in a significant release of As to the solution phase, contributing to further contamination of the aquifer.  相似文献   
992.
Sorption dynamics of organic and inorganic phosphorus compounds in soil   总被引:1,自引:0,他引:1  
Phosphorus retention in soils is influenced by the form of P added. The potential impact of one P compound on the sorption of other P compounds in soils has not been widely reported. Sorption isotherms were utilized to quantify P retention by benchmark soils from Indiana, Missouri, and North Carolina when P was added as inorganic P (Pi) or organic P (beta-D-glucose-6-phosphate, G6P; adenosine 5'-triphosphate, ATP; and myoinositol hexaphosphate, IP6) and to determine whether soil P sorption by these organic P compounds and Pi was competitive. Isotherm supernatants were analyzed for pH and total P using standard protocols, while Pi and organic P compounds were assayed using ion chromatography. Under the controlled conditions of this study, the affinity of all soils for P sources followed the order IP6 > G6P > ATP > Pi. Each organic P source had a different potential to desorb Pi from soils, and the order of greatest to least Pi desorption was G6P > ATP > IP6. Glucose-6-phosphate and ATP competed more directly with Pi for sorption sites than IP6 at greater rates of P addition, but at the lesser rates of P addition, IP6 actually desorbed more Pi. Inositol hexaphosphate was strongly sorbed by all three soils and was relatively unaffected by the presence of other P sources. Decreased total P sorption due to desorption of Pi can be caused by relatively small additions of organic P, which may help explain vertical P movement in manured soils. Sorption isotherms performed using Pi alone did not accurately predict total P sorption in soils.  相似文献   
993.
Rapid and reliable methods for documenting soil erosion associated with forest harvest operations are needed to support the development of best management practices for soil and water conservation. To address this need, the potential for using 7Be measurements to estimate patterns and amounts of soil redistribution associated with individual post-harvest events was explored. The 7Be technique, which was originally developed for use on agricultural land, was employed to estimate soil redistribution associated with a period of heavy rainfall within a harvested forest area located in the Lake Region of Chile (39 degrees 44'7' S, 73 degrees 10'39' W; 22% slope; and mean annual rainfall 2300 mm yr(-1)). The results provided by the 7Be technique were validated against direct measurements of soil gain or loss during the same period obtained using erosion pins. The information produced by the two approaches was similar. The results of this study demonstrate the potential for using 7Be measurements to document event-based erosion in recently harvested forest areas.  相似文献   
994.
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.  相似文献   
995.
The performance of an aerated submerged fixed-film reactor (ASFFR) under simultaneous organic and ammonium loading and its effect on nitrification was studied. Organic loadings varied in the range of 1.93 to 5.29 g chemical oxygen demand (COD) m-2 d-1 and NH4-N loadings were in the range of 116 to 318 mg NH4-N m-2 d-1. Increments of loading rates were obtained both by increasing the flow rate and increasing the influent substrate in individual pilot runs. Results showed that with organic loading rates up to 3.97 g COD m-2 d-1, complete nitrification was achievable. Although high organic loading such as 5.29 g COD m-2 d-1 could cause nitrification to stop, shifting to lower organic loadings made nitrification start and set rapidly to its previous steady-state concentrations. Comparison of results showed that in the ASFFR, nitrification would be severely affected by an organic loading rate of 5.29 g COD m-2 d-1 by increasing either the flow or the influent substrate. It should be noted that the average value of dissolved oxygen was 3.4 mg L-1 with an air supply of 15 L min-1, and there was no indication of oxygen limitation. The results of this study show the flexibility of ASFFRs under changing organic loads. Furthermore, for achieving complete nitrification and optimum application of these reactors for protecting receiving water from the environmental hazards of ammonium, the maximum organic loading that would present complete nitrification should be considered.  相似文献   
996.
Timing of manure application affects N leaching. This 3-yr study quantified N losses from liquid manure application on two soils, a Muskellunge clay loam and a Stafford loamy sand, as affected by cropping system and timing of application. Dairy manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under continuous maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Variable rates of supplemental sidedress N fertilizer were applied as needed. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring, with supplemental N fertilizer topdressed as NH4NO3 in early spring at 75 kg N ha(-1). Drain water was sampled at least weekly when lines were flowing. Three-year FWM (flow-weighted mean) NO3-N concentrations on loamy sand soil averaged 2.5 times higher (12.7 mg L(-1)) than those on clay loam plots (5.2 mg L(-1)), and those for fall applications on maize-cropped land averaged >10 mg L(-1) on the clay loam and >20 mg L(-1) on the loamy sand. Nitrate-N concentrations among application seasons followed the pattern early fall > late fall > early spring = early + late spring. For grass, average NO3-N concentrations from manure application remained well below 10 mg L(-1). Fall manure applications on maize show high NO3-N leaching risks, especially on sandy soils, and manure applications on grass pose minimal leaching concern.  相似文献   
997.
Dormant-season application of biosolids increases desert grass production more than growing season application in the first growing season after application. Differential patterns of NO3-N (plant available N) release following seasonal biosolids application may explain this response. Experiments were conducted to determine soil nitrate nitrogen dynamics following application of biosolids during two seasons in a tobosagrass [Hilaria mutica (Buckl.) Benth.] Chihuahuan Desert grassland. Biosolids were applied either in the dormant (early April) or growing (early July) season at 0, 18, or 34 dry Mg ha(-1). A polyester-nylon mulch was also applied to serve as a control that approximated the same physical effects on the soil surface as the biosolids but without any chemical effects. Supplemental irrigation was applied to half of the plots. Soil NO3-N was measured at two depths (0-5 and 5-15 cm) underneath biosolids (or mulch) and in interspace positions relative to surface location of biosolids (or mulch). Dormant-season biosolids application significantly increased soil NO3-N during the first growing season, and also increased soil NO3-N throughout the first growing season compared to growing-season biosolids application in a year of higher-than-average spring precipitation. In a year of lower-than-average spring precipitation, season of application did not affect soil NO3-N. Soil NO3-N was higher at both biosolids rates for both seasons of application than in the control treatment. Biosolids increased soil NO3-N compared to the inert mulch. Irrigation did not significantly affect soil NO3-N. Soil NO3-N was not significantly different underneath biosolids and in interspace positions. Surface soil NO3-N was higher during the first year of biosolids application, and subsurface soil NO3-N increased during the second year. Results showed that biosolids rate and season of application affected soil NO3-N measured during the growing season. Under dry spring-normal summer precipitation conditions, season of application did not affect soil NO3-N; in contrast, dormant season application increased soil NO3-N more than growing season application under wet spring-dry summer conditions.  相似文献   
998.
Long-term field trials using lignite fly ash (LFA) were carried out in rice crops during the period 1996-2000 at Mine I, Neyveli Lignite Corporation, Tamil Nadu. LFA, being alkaline and endowed with an excellent pozzolanic nature, silt loam texture, and plant nutrients, has the potential to improve the texture, fertility, and crop productivity of mine spoil. The rice crops were the first, third, fifth, and sixth crops in rotation. The other crops, such as green gram (second) and sun hemp (fourth), were grown as green manure. For experimental trials, LFA was applied at various dosages (0, 5, 10, 20, 50, 100, and 200 t/ha), with and without press mud (10 t/ha), before cultivation of the first crop. Repeat applications of LFA were made at the same dosages in treatments of up to 50 t/ha (with and without press mud) before cultivation of the third and fifth crops. Press mud, a lightweight organic waste product from the sugar industry, was used as an organic amendment and source of plant nutrients. Also, a recommended dosage of chemical fertilizer, along with gypsum, humic acid, and biofertilizer as supplementing agents, was applied in all the treatments, including control. With one-time and repeat applications of LFA, from 5 to 20 t/ha (with and without press mud), the crop yield (grain and straw) increased significantly (p < 0.05), in the range from 3.0 to 42.0% over the corresponding control. The maximum yield was obtained with repeat applications of 20 t/ha of LFA with press mud in the third crop. The press mud enhanced the yield in the range of 1.5-10.2% with various dosages of LFA. The optimum dosage of LFA was 20 t/ha for both one-time and repeat applications. Repeat applications of LFA at lower dosages of up to 20 t/ha were more effective in increasing the yield than the corresponding one-time applications of up to 20 t/ha and repeat applications at 50 t/ha. One-time and repeat applications of LFA of up to 20 t/ha (with and without press mud), apart from increasing the yield, evinced improvement in the texture and fertility of mine spoil and the nutrient content of crop produce. Furthermore, some increase in the content of trace and heavy metals and the level of gamma-emitters in the mine spoil and crop produce was observed, but well within the permissible limits. The residual effect of LFA on succeeding crops was also encouraging in terms of eco-friendliness. Beyond 20 t/ha of LFA, the crop yield decreased significantly (p < 0.05), as a result of the formation of hardpan in the mine spoil and possibly the higher concentration of soluble salts in the LFA. However, the adverse effects of soluble salts were annulled progressively during the cultivation of succeeding crops. A plausible mechanism for the improved fertility of mine spoil and the carryover or uptake of toxic trace and heavy metals and gamma-emitters in mine spoil and crop produce is also discussed.  相似文献   
999.
Electroosmotic dewatering of dredged sediments: bench-scale investigation   总被引:1,自引:0,他引:1  
The Indiana Harbor (Indiana, USA) has not been dredged since 1972 due to lack of a suitable disposal site for dredged sediment. As a result of this, over a million cubic yards of highly contaminated sediment has accumulated in the harbor. Recently, the United States Army Corps of Engineers (USACE) has selected a site for the confined disposal facility (CDF) and is in the process of designing it. Although dredging can be accomplished rapidly, the disposal in the CDF has to be done slowly to allow adequate time for consolidation to occur. The sediment possesses very high moisture content and very low hydraulic conductivity, which cause consolidation to occur slowly. Consolidation of the sediment is essential in order to achieve adequate shear strength of sediments and also to provide enough air space to accommodate the large amount of sediment that requires disposal. Currently, it has been estimated that if a one 3-foot (0.9-m) thick layer of sediment was disposed of at the CDF annually, it would take approximately 10 years to dispose of all the sediment that is to be dredged from the Indiana Harbor. This study investigated the feasibility of using an electroosmotic dewatering technology to accelerate dewatering and consolidation of sediment, thereby allowing more rapid disposal of sediment into the CDF. Electroosmotic dewatering essentially involves applying a small electric potential across the sediment layer, thereby inducing rapid flow as a result of physico-chemical and electrochemical processes. A series of bench-scale electrokinetic experiments were conducted on actual dredged sediment samples from the Indiana Harbor to investigate dewatering rates caused by gravity alone, dewatering rates caused by gravity and electric potential, and the effects of the addition of polymer flocculants on dewatering of the sediments. The results showed that electroosmotic dewatering under an applied electric potential of 1.0VDC/cm could increase the rate of dewatering and consolidation by an order of magnitude as compared to gravity drainage alone. Amending the sediment with polymers at low concentrations (0.5-1% by dry weight) will enhance this dewatering process; however, the optimal polymer concentration and the cost-effectiveness of using polymers should be investigated further.  相似文献   
1000.
Effects of calibration on L-THIA GIS runoff and pollutant estimation   总被引:3,自引:0,他引:3  
Urbanization can result in alteration of a watershed's hydrologic response and water quality. To simulate hydrologic and water quality impacts of land use changes, the Long-Term Hydrologic Impact Assessment (L-THIA) system has been used. The L-THIA system estimates pollutant loading based on direct runoff quantity and land use based pollutant coefficients. The accurate estimation of direct runoff is important in assessing water quality impacts of land use changes. An automated program was developed to calibrate the L-THIA model using the millions of curve number (CN) combinations associated with land uses and hydrologic soil groups. L-THIA calibration for the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana was performed using land use data for 1991 and daily rainfall data for six months of 1991 (January 1-June 30) to minimize errors associated with use of different temporal land use data and rainfall data. For the calibration period, the Nash-Sutcliffe coefficient was 0.60 for estimated and observed direct runoff. The calibrated CN values were used for validation of the model for the same year (July 1-December 31), and the Nash-Sutcliffe coefficient was 0.60 for estimated and observed direct runoff. The Nash-Sutcliffe coefficient was 0.52 for January 1, 1991 to December 31, 1991 using uncalibrated CN values. As shown in this study, the use of better input parameters for the L-THIA model can improve accuracy. The effects on direct runoff and pollutant estimation of the calibrated CN values in the L-THIA model were investigated for the LEC. Following calibration, the estimated average annual direct runoff for the LEC watershed increased by 34%, total nitrogen by 24%, total phosphorus by 22%, and total lead by 43%. This study demonstrates that the L-THIA model should be calibrated and validated prior to application in a particular watershed to more accurately assess the effects of land use changes on hydrology and water quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号