首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
废物处理   3篇
综合类   10篇
基础理论   7篇
污染及防治   10篇
评价与监测   3篇
社会与环境   2篇
  2023年   1篇
  2021年   3篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1995年   1篇
  1994年   1篇
  1977年   1篇
排序方式: 共有35条查询结果,搜索用时 156 毫秒
21.
Continuous pulsed plate bioreactor (PPBR) was used for phenol biodegradation. Pseudomonas desmolyticum cells immobilized on granular activated carbon was used. Dynamic and steady state biofilm characteristics depend on dilution rate (DR). Lower DR favour phenol degradation and uniform, thick biofilm formation. Exo polymeric substance production in biofilm are favoured at lower dilution rates. Pulsed plate bioreactor (PPBR) is a biofilm reactor which has been proven to be very efficient in phenol biodegradation. The present paper reports the studies on the effect of dilution rate on the physical, chemical and morphological characteristics of biofilms formed by the cells of Pseudomonas desmolyticum on granular activated carbon (GAC) in PPBR during biodegradation of phenol. The percentage degradation of phenol decreased from 99% to 73% with an increase in dilution rate from 0.33 h?1 to 0.99 h?1 showing that residence time in the reactor governs the phenol removal efficiency rather than the external mass transfer limitations. Lower dilution rates favor higher production of biomass, extracellular polymeric substances (EPS) as well as the protein, carbohydrate and humic substances content of EPS. Increase in dilution rate leads to decrease in biofilm thickness, biofilm dry density, and attached dry biomass, transforming the biofilm from dense, smooth compact structure to a rough and patchy structure. Thus, the performance of PPBR in terms of dynamic and steady-state biofilm characteristics associated with phenol biodegradation is a strong function of dilution rate. Operation of PPBR at lower dilution rates is recommended for continuous biologic treatment of wastewaters for phenol removal.  相似文献   
22.
4-[N,N-(Diethyl)amino] benzaldehyde thiosemicarbazone (DEABT) is proposed as an analytical reagent for the spectrophotometric determination of platinum(IV). The DEABT forms 1:2 yellow complex with Pt(IV), which is sparingly soluble in water and completely soluble in water–ethanol–DMF medium. The Pt(IV)–DEABT complex shows maximum absorbance at 405 nm. Beer’s law is valid up to 7.80 μg cm???3, and optimum concentration range for the determination of platinum(IV) is 0.48–7.02 μg cm???3. The molar absorptivity and Sandell’s sensitivity of the method are found to be 1.755 × 104 dm3 mol???1 cm???1 and 0.0012 μg cm???2, respectively. The relative error and coefficient of variation (n?=?6) for the method does not exceed ±0.43% and 0.35%, respectively. Since the method tolerates a number of metal ions commonly associated with platinum, it can be employed for the determination of platinum in environmental samples, pharmaceutical samples, alloys, catalysts, and complexes. The method is rapid as the Pt(IV)–DEABT complex is soluble in water–ethanol–DMF medium and not requiring any time consuming extraction method for the complex.  相似文献   
23.
Environmental Science and Pollution Research - The studies on photocatalytic disinfection of water contaminated with Escherichia coli using Ag core and TiO2 shell (Ag@TiO2) nanoparticles under UV...  相似文献   
24.
25.
黄铁矿产酸成分与中和酸成分的消耗及其有效成分的确定   总被引:1,自引:0,他引:1  
动态浸滤法研究黄铁矿氧化产酸过程中产酸成分(AP)和中和酸成分(NP)的消耗,讨论了有效NP、AP的确定.50周实验结果表明:(1)中和酸成分NP和产酸成分AP消耗速率呈非线性变化.酸性排放(ARD)前,即pH=4前,AP、NP平均消耗速率VAP与VNPp基本相同;ARD开始释放后,VAP>2VNP;(2)排放液pH<...  相似文献   
26.
采用动态风化模拟实验方法对来自广东某Tl污染区的硫铁矿矿样进行了2a左右持续的氧化淋滤实验,研究了硫铁矿酸化趋势及毒害金属元素铊Tl从源头向环境长期释放迁移的特征,探讨了硫铁矿酸化及Tl释放迁移的机制.结果表明:含碳酸盐硫铁矿暴露后,排放液pH值随时间呈缓慢波段下降趋势,较长时期内排放液pH>5.伴随硫铁矿酸化过程,Tl具特有的释放迁移特征.硫铁矿一旦暴露Tl就开始释放,且具强的迁移性,随后伴随风化进程呈波段减弱.在pH>5的环境中,Tl释放迁移受pH值的影响不同于酸性(pH<5)环境中,pH值降低对Tl的释放迁移没有促进作用,滤液中Tl的浓度与pH值呈正相关,还原环境有助于Tl的释放迁移.  相似文献   
27.
Wastewater released from textile industries causes water pollution, and it needs to be treated before discharge to the environment by cost effective technologies. Solar photocatalysis is a promising technology for the treatment of dye wastewater. The Ag@TiO2 nanoparticles comprising of Ag core and TiO2 shell (Ag@TiO2) have unique photocatalytic property of inhibition of electron–hole recombination and visible light absorption, which makes it a promising photocatalyst for use in solar photocatalysis and with higher photocatalytic rate. Therefore, in the present work, the Ag@TiO2 nanoparticles synthesized by one pot method with postcalcination step has been used for the degradation of Acid Yellow-17 (AY-17) dye under solar light irradiation. The Ag@TiO2 nanoparticles were characterized using thermogravimetric–differential thermal analysis, X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray analysis. The catalyst has been found to be very effective in solar photocatalysis of AY-17, as compared to other catalysts. The effects of pH, catalyst loading, initial dye concentration, and oxidants on photocatalysis were also studied. The optimized parameters for degradation of AY-17 using Ag@TiO2 were found to be pH?3, dye/catalyst ratio of 1:10 (g/g), and 2 g/L of (NH4)2S2O8 as oxidant. Efficient decolorization and mineralization of AY-17 was achieved. The kinetics of color, total organic carbon, and chemical oxygen demand removal followed the Langmuir–Hinshelwood model. Ag@TiO2 catalyst can be reused thrice without much decline in efficiency. The catalyst exhibited its potential as economic photocatalyst for treatment of dye wastewater.  相似文献   
28.
Environmental Science and Pollution Research - Narrow band gap of ferrites makes it a good photocatalyst, and it plays very prominent role in the level of degradation of organic dyes by...  相似文献   
29.
Nanoscale zero valent iron (nZVI) was evaluated in a laboratory treatability study and subsequently injected as an interim measure to treat source area groundwater impacts beneath a former dry cleaner located in Chapel Hill, North Carolina (the site). Dry cleaning operations resulted in releases of tetrachloroethene (PCE) that impacted site soil at concentrations up to 2,700 mg/kg and shallow groundwater at concentrations up to 41 mg/L. To achieve a design loading rate of 0.001 kg of iron per kilogram of aquifer material, approximately 725 kg of NanoFe? (PARS Environmental) was injected over a two‐week period into a saprolite and partially weather rock aquifer. Strong reducing conditions were established with oxidation–reduction potential (ORP) values below –728 mV. pH levels remained greater than 8 standard units for a period of 12 months. Injections resulted in near elimination of PCE within one month. cis‐1,2‐Dichloroethene accumulated at high concentrations (greater than 65 mg/L) for 12 months. MAROS software (Version 2.2; AFCEE, 2006 ) was used to calculate mass reduction of PCE and total ethenes at 96 percent and 58 percent, respectively, compared to baseline conditions. Detections of acetylene confirmed the presence of the beta‐elimination pathway. Detections of ethene confirmed complete dechlorination of PCE. Based on hydrogen gas generation, iron reactivity lasted 15 months. © 2013 Wiley Periodicals, Inc.  相似文献   
30.
Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in this study confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well. Implications: Nowadays, subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in the indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, this paper presents a new methodology for monitoring and assessing total amounts of indoor air pollutants emitted inside underground spaces and subway stations. A new methodology for the calculation of cumulative amounts of indoor air pollutants based on integration concept is proposed. The results suggest that the cumulative assessment approach of IAQ is useful for monitoring the values of total amounts of indoor air pollutants, if indoor air pollutants accumulated for a long time, especially NO2 pollutants. The results obtained here confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号